BiGRU-Attention 模型
BiGRU-Attention 模型共分为三部分:文本向量化输入层、 隐含层和输出层。其中,隐含层由 BiGRU 层、attention 层和 Dense 层(全连接层)三层构成。BiGRU-Attention 模型结构如图 6 所示。
下面对这三层的功能分别进行介绍:
- 输入层
输入层即文本向量化输入层主要是对IMDB电影评论的25 000条数据的预处理。即把这些评论数据处理成 BiGRU 层能够直接接收并能处理的序列向量形式。m 个单词组成 l 个句子的文 本 a 即, 样 本 中 的 第 j 个句子表示为
,进行文本向量操作,使