动态规划算法:学习总结及其实例分析

动态规划是一种解决最优化问题的算法,通过将问题分解为子问题并利用最优子结构来避免重复计算。其关键特性包括最优化原理、无后效性和有重叠子问题。在实现时,通常涉及问题的拆分、定义状态转移方程和保存最优解。动态规划广泛应用于解决具有这些特性的复杂问题,如背包问题、最长公共子序列等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.定义

动态规划算法的基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

2.这类问题特点

动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。
(1)最优化原理:假设问题的最优解所包括的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。(子问题之间是有联系的)

(2)无后效性:即某阶段状态一旦确定。就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响曾经的状态。仅仅与当前状态有关;

(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到(该性质并非动态规划适用的必要条件,可是假设没有这条性质。动态规划算法同其它算法相比就不具备优势)。

3.算法实现思路

(1)拆分问题: 据问题的可能性把问题划分成一步一步这样就可以通过递推或者递归来实现.

关键就是这个步骤,动态规划有一类问题就是从后往前推到,有时候我们很容易知道:如果只有一种情况时,最佳的选择应该怎么做.然后根据这个最佳选择往前一步推导,得到前一步的最佳选择.

(2)定义问题状态和状态之间的关系: 是前面拆分的步骤之间的关系,用一种量化的形式表现出来,类似于高中学的推导公式,因为这种式子很容易用程序写出来,也可以说对程序比较亲和(也就是最后所说的状态转移方程式)

(3)找到最优解: 我们应该讲最优解保存下来,为了往前推导时能够使用前一步的最优解,在这个过程中难免有一些相比于最优解差的解,此时我们应该放弃,只保存最优解,这样我们每一次都把最优解保存了下来,大大降低了时间复杂度

4.算法实现策略2

基本思想与分治法类似,
(1)将待求解的问题分解为若干个子问题(阶段),
(2)顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。
(3)在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

动态规划中的子问题往往不是相互独立的(即子问题重叠)。在求解的过程中,许多子问题的解被反复地使用。为了避免重复计算,动态规划算法采用了填表来保存子问题解的方法。

原文链接:https://blog.youkuaiyun.com/SweetSeven_/article/details/95466195
https://blog.youkuaiyun.com/ailaojie/article/details/83014821

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值