BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)详解
第三十次写博客,本人数学基础不是太好,如果有幸能得到读者指正,感激不尽,希望能借此机会向大家学习。这一篇作为可伸缩聚类(Scalable Clustering)算法的第三篇,主要是对BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)算法进行详细介绍,其他可伸缩聚类算法的链接可以从《可伸缩聚类算法综述(可伸缩聚类算法开篇)》这篇文章中找到。
CF和CF-Tree
聚类特征(Clustering Feature,简称CF)是一种用来表征聚类特征的数据格式,他由以下三部分组成:簇中所含样本点的个数(用 N N N来表示)、簇中所有点的各项属性的线性和(用 L S LS LS来表示)以及簇中所有点的各项属性的平方和(用 S S SS SS来表示),假设存在簇 C = { ( 1 , 2 ) , ( 2 , 1 ) , ( 1 , 1 ) , ( 2 , 2 ) } C=\{\left(1,2\right),\left(2,1\right),\left(1,1\right),\left(2,2\right)\} C={ (1,2),(2,1),(1,1),(2,2)},那么 N = 4 N=4 N=4, L S = ( { 1 + 2 + 1 + 2 } , { 2 + 1 + 1 + 2 } ) = ( 6 , 6 ) LS=\left(\{1+2+1+2\},\{2+1+1+2\}\right)=\left(6,6\right) LS=({ 1