参考博客:https://blog.youkuaiyun.com/u013733326/article/details/79767169
开始过程还是和之前的一样
提前导入软件包
import numpy as np
import h5py
import matplotlib.pyplot as plt
import testCases
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
import lr_utils
dnn_utils.py部分的代码
import numpy as np
def sigmoid(Z):
"""
Implements the sigmoid activation in numpy
Arguments:
Z -- numpy array of any shape
Returns:
A -- output of sigmoid(z), same shape as Z
cache -- returns Z as well, useful during backpropagation
"""
A = 1/(1+np.exp(-Z))
cache = Z
return A, cache
def sigmoid_backward(dA, cache):
"""
Implement the backward propagation for a single SIGMOID unit.
Arguments:
dA -- post-activation gradient, of any shape
cache -- 'Z' where we store for computing backward propagation efficiently
Returns:
dZ -- Gradient of the cost with respect to Z
"""
Z = cache
s = 1/(1+np.exp(-Z))
dZ = dA * s * (1-s)
assert (dZ.shape == Z.shape)
return dZ
def relu(Z):
"""
Implement the RELU function.
Arguments:
Z -- Output of the linear layer, of any shape
Returns:
A -- Post-activation parameter, of the same shape as Z
cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently
"""
A = np.maximum(0,Z)
assert(A.shape == Z.shape)
cache = Z
return A, cache
def relu_backward(dA, cache):
"""
Implement the backward propagation for a single RELU unit.
Arguments:
dA -- post-activation gradient, of any shape
cache -- 'Z' where we store for computing backward propagation efficiently
Returns:
dZ -- Gradient of the cost with respect to Z
"""
Z = cache
dZ = np.array(dA, copy=True) # just converting dz to a correct object.
# When z <= 0, you should set dz to 0 as well.
dZ[Z <= 0] = 0
assert (dZ.shape == Z.shape)
return dZ
lr_utils.py部分的代码
import numpy as np
import h5py
def load_dataset():
train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
testCases.py部分的代码
import numpy as np
def linear_forward_test_case():
np.random.seed(1)
"""
X = np.array([[-1.02387576, 1.12397796],
[-1.62328545, 0.64667545],
[-1.74314104, -0.59664964]])
W = np.array([[ 0.74505627, 1.97611078, -1.24412333]])
b = np.array([[1]])
"""
A = np.random.randn(3,2)
W = np.random.randn(1,3)
b = np.random.randn(1,1)
return A, W, b
def linear_activation_forward_test_case():
"""
X = np.array([[-1.02387576, 1.12397796],
[-1.62328545, 0.64667545],
[-1.74314104, -0.59664964]])
W = np.array([[ 0.74505627, 1.97611078, -1.24412333]])
b = 5
"""
np.random.seed(2)
A_prev = np.random.randn(3,2)
W = np.random.randn(1,3)
b = np.random.randn(1,1)
return A_prev, W, b
def L_model_forward_test_case():
"""
X = np.array([[-1.02387576, 1.12397796],
[-1.62328545, 0.64667545],
[-1.74314104, -0.59664964]])
parameters = {'W1': np.array([[ 1.62434536, -0.61175641, -0.52817175],
[-1.07296862, 0.86540763, -2.3015387 ]]),
'W2': np.array([[ 1.74481176, -0.7612069 ]]),
'b1': np.array([[ 0.],
[ 0.]]),
'b2': np.array([[ 0.]])}
"""
np.random.seed(1)
X = np.random.randn(4,2)
W1 = np.random.randn(3,4)
b1 = np.random.randn(3,1)
W2 = np.random.randn(1,3)
b2 = np.random.randn(1,1)
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return X, parameters
def compute_cost_test_case():
Y = np.asarray([[1, 1, 1]])
aL = np.array([[.8,.9,0.4]])
return Y, aL
def linear_backward_test_case():
"""
z, linear_cache = (np.array([[-0.8019545 , 3.85763489]]), (np.array([[-1.02387576, 1.12397796],
[-1.62328545, 0.64667545],
[-1.74314104, -0.59664964]]), np.array([[ 0.74505627, 1.97611078, -1.24412333]]), np.array([[1]]))
"""
np.random.seed(1)
dZ = np.random.randn(1,2)
A = np.random.randn(3,2)
W = np.random.randn(1,3)
b = np.random.randn(1,1)
linear_cache = (A, W, b)
return dZ, linear_cache
def linear_activation_backward_test_case():
"""
aL, linear_activation_cache = (np.array([[ 3.1980455 , 7.85763489]]), ((np.array([[-1.02387576, 1.12397796], [-1.62328545, 0.64667545], [-1.74314104, -0.59664964]]), np.array([[ 0.74505627, 1.97611078, -1.24412333]]), 5), np.array([[ 3.1980455 , 7.85763489]])))
"""
np.random.seed(2)
dA = np.random.randn(1,2)
A = np.random.randn(3,2)
W = np.random.randn(1,3)
b = np.random.randn(1,1)
Z = np.random.randn(1,2)
linear_cache = (A, W, b)
activation_cache = Z
linear_activation_cache = (linear_cache, activation_cache)
return dA, linear_activation_cache
def L_model_backward_test_case():
"""
X = np.random.rand(3,2)
Y = np.array([[1, 1]])
parameters = {'W1': np.array([[ 1.78862847, 0.43650985, 0.09649747]]), 'b1': np.array([[ 0.]])}
aL, caches = (np.array([[ 0.60298372, 0.87182628]]), [((np.array([[ 0.20445225, 0.87811744],
[ 0.02738759, 0.67046751],
[ 0.4173048 , 0.55868983]]),
np.array([[ 1.78862847, 0.43650985, 0.09649747]]),
np.array([[ 0.]])),
np.array([[ 0.41791293, 1.91720367]]))])
"""
np.random.seed(3)
AL = np.random.randn(1, 2)
Y = np.array([[1, 0]])
A1 = np.random.randn(4,2)
W1 = np.random.randn(3,4)
b1 = np.random.randn(3,1)
Z1 = np.random.randn(3,2)
linear_cache_activation_1 = ((A1, W1, b1), Z1)
A2 = np.random.randn(3,2)
W2 = np.random.randn(1,3)
b2 = np.random.randn(1,1)
Z2 = np.random.randn(1,2)
linear_cache_activation_2 = ( (A2, W2, b2), Z2)
caches = (linear_cache_activation_1, linear_cache_activation_2)
return AL, Y, caches
def update_parameters_test_case():
"""
parameters = {'W1': np.array([[ 1.78862847, 0.43650985, 0.09649747],
[-1.8634927 , -0.2773882 , -0.35475898],
[-0.08274148, -0.62700068, -0.04381817],
[-0.47721803, -1.31386475, 0.88462238]]),
'W2': np.array([[ 0.88131804, 1.70957306, 0.05003364, -0.40467741],
[-0.54535995, -1.54647732, 0.98236743, -1.10106763],
[-1.18504653, -0.2056499 , 1.48614836, 0.23671627]]),
'W3': np.array([[-1.02378514, -0.7129932 , 0.62524497],
[-0.16051336, -0.76883635, -0.23003072]]),
'b1': np.array([[ 0.],
[ 0.],
[ 0.],
[ 0.]]),
'b2': np.array([[ 0.],
[ 0.],
[ 0.]]),
'b3': np.array([[ 0.],
[ 0.]])}
grads = {'dW1': np.array([[ 0.63070583, 0.66482653, 0.18308507],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ]]),
'dW2': np.array([[ 1.62934255, 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ]]),
'dW3': np.array([[-1.40260776, 0. , 0. ]]),
'da1': np.array([[ 0.70760786, 0.65063504],
[ 0.17268975, 0.15878569],
[ 0.03817582, 0.03510211]]),
'da2': np.array([[ 0.39561478, 0.36376198],
[ 0.7674101 , 0.70562233],
[ 0.0224596 , 0.02065127],
[-0.18165561, -0.16702967]]),
'da3': np.array([[ 0.44888991, 0.41274769],
[ 0.31261975, 0.28744927],
[-0.27414557, -0.25207283]]),
'db1': 0.75937676204411464,
'db2': 0.86163759922811056,
'db3': -0.84161956022334572}
"""
np.random.seed(2)
W1 = np.random.randn(3,4)
b1 = np.random.randn(3,1)
W2 = np.random.randn(1,3)
b2 = np.random.randn(1,1)
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
np.random.seed(3)
dW1 = np.random.randn(3,4)
db1 = np.random.randn(3,1)
dW2 = np.random.randn(1,3)
db2 = np.random.randn(1,1)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return parameters, grads
然后主要代码,和之前一样,每个块注释的代码都只对上一部分的测试
import imageio
import numpy as np
import h5py
import matplotlib.pyplot as plt
from scipy import ndimage
from scipy.spatial import transform
import testCases
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
import lr_utils
import scipy
import scipy.ndimage
import scipy.misc
import matplotlib
from PIL import Image
np.random.seed(1)
def initialize_parameters(n_x, n_h, n_y):
"""
初始化两层网络参数的函数
:param n_x: 输入层节点数
:param n_h: 隐藏层节点数
:param n_y: 输出层节点数
:return:
parameters:
W1:权重矩阵,维度(n_h,n_x)
b1:偏向量,维度(n_h,1)
W2:权重矩阵,维度(n_y,n_h)
b2:谝向量,维度(n_y,1)
"""
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros((n_y, 1))
#用断言来确保数据正确
assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
parameters = {
"W1":W1,
"b1":b1,
"W2":W2,
"b2":b2
}
return parameters
"""
#测试initialize_parameters
parameters = initialize_parameters(3, 2, 1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
"""
def initialize_parameters_deep(layers_dims):
"""
初始化多层网络参数的函数
:param layers_dims: 包含网络中每个图层的节点数量的列表
:return: parameters - 包含参数“W1”,“b1”,...,“WL”,“bL”的字典:
W1 - 权重矩阵,维度为(layers_dims [1],layers_dims [1-1])
bl - 偏向量,维度为(layers_dims [1],1)
"""
np.random.seed(3)
parameters = {}
L = len(layers_dims)
for i in range(1, L):
parameters["W" + str(i)] = np.random.randn(layers_dims[i], layers_dims[i - 1]) / np.sqrt(layers_dims[i - 1])
parameters["b" + str(i)] = np.zeros((layers_dims[i], 1))
#是用断言确保数据正确
assert (parameters["W" + str(i)].shape == (layers_dims[i], layers_dims[i - 1]))
assert (parameters["b" + str(i)].shape == (layers_dims[i], 1))
return parameters
"""
#测试initialize_parameters_deep
layers_dims = [5,4,3]
parameters = initialize_parameters_deep(layers_dims)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
"""
###前向传播函数
"""
前向传播有以下三个步骤
LINEAR
LINEAR - >ACTIVATION,其中激活函数将会使用ReLU或Sigmoid。
[LINEAR - > RELU] ×(L-1) - > LINEAR - > SIGMOID(整个模型)
线性正向传播模块(向量化所有示例)使用公式(3)进行计算:
Z[l]=W[l]A[l−1]+b[l] (3)
"""
#前向传播的线性部分
def linear_forward(A, W, b):
"""
实现前向传播的线性部分
:param A: 来自上一层(或输入数据)的激活,维度为(上一层的节点数量,示例的数量)
:param W: 权重矩阵,numpy数组,维度为(当前涂层的节点数量,前一图层的节点数量)
:param b: 偏向量,numpy向量,维度为(当前图层节点数量, 1)
:return: Z:激活功能的输入,也称预激活函数
cache:一个包含“A”,“W”和“b”的字典,存储这些变量以有效地计算后向传递
"""
Z = np.dot(W, A) + b
assert (Z.shape == (W.shape[0], A.shape[1]))
cache = (A, W ,b)
return Z, cache
"""
#测试linear_forward
A,W,b = testCases.linear_forward_test_case()
Z,linear_cache = linear_forward(A,W,b)
print("Z = " + str(Z))
"""
#线性激活部分
def linear_activation_forward(A_prev, W, b, activation):
"""
实现线性激活部分这一层的前向传播
:param A_prev: 来自上一层(或输入层)的激活,维度为(上一层的节点数量,示例数)
:param W: 权重矩阵,numpy数组,维度为(当前层的节点数量,前一层的大小)
:param b: 偏移量,numpy阵列,维度为(当前层的节点数量, 1)
:param activation: 选择在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
:return:
A:激活函数的输出,也称激活后的值
cache:一个包含“linear_cache”和“activation_cache”的字典,我们需要存储它以有效地计算后向传递
"""
if activation == "sigmoid":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)
elif activation == "relu":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)
assert (A.shape == (W.shape[0], A_prev.shape[1]))
cache = (linear_cache, activation_cache)
return A, cache
"""
#测试linear_activation_forward
A_prev, W,b = testCases.linear_activation_forward_test_case()
A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
print("sigmoid,A = " + str(A))
A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
print("ReLU,A = " + str(A))
"""
#多层模型的前向传播 通过调用上面两个函数实现
def L_model_forward(X, parameters):
"""
多层网络的前向传播,为后面每一层都执行LINEAR和ACTIVATION
:param X:数据,numpy数组,维度为(输入节点数量, 示例数)
:param parameters:initialize_parameters_deep()的输出
:return:AL:最后的激活值
caches 包含以下内容的缓存列表:
linear_relu_forward()的每个cache(有L-1个,索引为从0到L-2)
linear_sigmoid_forward()的cache(只有一个,索引为L-1)
"""
caches = []
A = X
L = len(parameters) // 2
for i in range(1, L):
A_prev = A
A, cache = linear_activation_forward(A_prev, parameters['W' + str(i)], parameters['b' + str(i)], "relu")
caches.append(cache)
AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid")
caches.append(cache)
assert (AL.shape == (1, X.shape[1]))
return AL, caches
"""
#测试L_model_forward
print("==============测试L_model_forward==============")
X,parameters = testCases.L_model_forward_test_case()
AL,caches = L_model_forward(X,parameters)
print("AL = " + str(AL))
print("caches 的长度为 = " + str(len(caches)))
"""
#计算成本
def compute_cost(AL, Y):
"""
成本函数
:param AL: 与标签预测相对应的概率向量,维度为(1,示例数量)
:param Y: 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度(1,数量)
:return:cost 交叉熵成本
"""
m = Y.shape[1]
cost = -np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1 - AL), 1 - Y)) / m
cost = np.squeeze(cost)
assert(cost.shape == ())
return cost
"""
#测试compute_cost
Y,AL = testCases.compute_cost_test_case()
print("cost = " + str(compute_cost(AL, Y)))
"""
###反向传播
#后向传播的线性部分
def linear_backward(dZ, cache):
"""
为单层实现反向传播的线性部分(第L层)
:param dZ: 相对于(当前第l层的)线性输出的成本梯度
:param cache:来自当前层前向传播的值的元组(A_prev,W,b)
:return:dA_prev - 相对于激活(前一层l-1)的成本梯度,与A_prev维度相同
dW - 相对于W(当前层l)的成本梯度,与W的维度相同
db - 相对于b(当前层l)的成本梯度,与b维度相同
"""
A_prev, W, b = cache
m = A_prev.shape[1]
dW = np.dot(dZ, A_prev.T) / m
db = np.sum(dZ, axis=1, keepdims=True) / m
dA_prev = np.dot(W.T, dZ)
assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)
return dA_prev, dW, db
"""
#测试linear_backward
dZ, linear_cache = testCases.linear_backward_test_case()
dA_prev, dW, db = linear_backward(dZ, linear_cache)
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
"""
#反向线性激活函数
def linear_activation_backward(dA, cache, activation='relu'):
"""
实现LINEAR->ACTIVATION层的后向传播
:param dA: 当前层激活后的梯度值
:param cache: 存储用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
:param activation:使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
:return:dA_prev :相当于激活(前一层i-1)的成本梯度值,与A_prev维度相同
dW:相当于W(当前层i)的成本梯度值,与W的维度相同
db:相当于b(当前层i)的成本梯度值,与b的维度相同
"""
linear_cache, activation_cache = cache
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
"""
#测试linear_activation_backward
AL, linear_activation_cache = testCases.linear_activation_backward_test_case()
dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid")
print ("sigmoid:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")
dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu")
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
"""
#多层模型反向传播函数
def L_model_backward(AL, Y, caches):
"""
对[LINEAR-> RELU] *(L-1) - > LINEAR - > SIGMOID组执行反向传播,就是多层网络的向后传播
:param AL:概率向量,正向传播的输出(L_model_forward())
:param Y:标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)
:param caches:包含以下内容的cache列表:
linear_activation_forward("relu")的cache,不包含输出层
linear_activation_forward("sigmoid")的cache
:return:grads - 具有梯度值的字典
grads [“dA”+ str(l)] = ...
grads [“dW”+ str(l)] = ...
grads [“db”+ str(l)] = ...
"""
grads = {}
L = len(caches)
m = AL.shape[1]
Y = Y.reshape(AL.shape)
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
current_cache = caches[L - 1]
grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")
for i in reversed(range(L - 1)):
current_cache = caches[i]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(i + 2)], current_cache, "relu")
grads["dA" + str(i + 1)] = dA_prev_temp
grads["dW" + str(i + 1)] = dW_temp
grads["db" + str(i + 1)] = db_temp
return grads
"""
#测试L_model_backward
AL, Y_assess, caches = testCases.L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dA1 = "+ str(grads["dA1"]))
"""
#更新参数
"""
更新参数公式
W[l]=W[l]−α * dW[l]
b[l]=b[l]−α * db[l]
α为学习率
"""
def update_parameters(parameters, grads, learning_rate):
"""
使用梯度下降更新参数
:param parameters: 包含自己参数的字典
:param grads: 包含梯度值的字典,是L_model_backward的输出
:param learming_rate: 学习率
:return: parameters - 包含更新参数的字典
参数[“W”+ str(l)] = ...
参数[“b”+ str(l)] = ...
"""
L= len(parameters) // 2
for i in range(L):
parameters["W" + str(i + 1)] = parameters["W" + str(i + 1)] - learning_rate * grads["dW" + str(i + 1)]
parameters["b" + str(i + 1)] = parameters["b" + str(i + 1)] - learning_rate * grads["db" + str(i + 1)]
return parameters
"""
#测试update_parameters
parameters, grads = testCases.update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)
print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))
"""
###搭建神经网络
#搭建两层神经网络
def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost = False, isPlot = True):
"""
实现两层神经网络
:param X: 输入的数据,维度为(n_x,例子数)
:param Y: 标签,向量,0不是猫,1是猫,维度为(1,数量)
:param layers_dims: 层数的向量,维度为(n_y,n_h,n_y)
:param learning_rate: 学习率
:param num_iterations: 迭代的次数
:param print_cost: 是否打印成本值
:param isPlot: 是否绘制出误差值的图谱
:return: parameters 一个包含W1,b1,W2,b2的字典变量
"""
np.random.seed(1)
grads = {}
costs = []
(n_x, n_h, n_y) = layers_dims
#初始化参数
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
#开始进行迭代
for i in range(0, num_iterations):
#前向传播
A1, cache1 = linear_activation_forward(X, W1, b1, "relu")
A2, cache2 = linear_activation_forward(A1, W2, b2, "sigmoid")
#计算成本
cost = compute_cost(A2, Y)
#后向传播
##初始化后向传播
dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
##后向传播,输入:“dA2,cache2,cache1”。 输出:“dA1,dW2,db2;还有dA0(未使用),dW1,db1”。
dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")
##向后传播完成后的数据保存到grads
grads["dW1"] = dW1
grads["db1"] = db1
grads["dW2"] = dW2
grads["db2"] = db2
#更新参数
parameters = update_parameters(parameters, grads, learning_rate)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
#打印成本函数,如果print_cost=False则忽略
if i % 100 == 0:
#记录成本
costs.append(cost)
#是否打印成本值
if print_cost:
print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost))
#迭代完成 根据条件绘图
if isPlot:
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("learning rate = " + str(learning_rate))
plt.show()
return parameters
#搭建多层神经网络
def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False,isPlot=True):
"""
实现一个多层神经网络
:param X: 输入的数据
:param Y: 标签,向量,0为非猫,1为猫,维度(1,数量)
:param layers_dims: 层数的向量,维度(n_y,n_h,…,n_h,n_y)
:param learning_rate: 学习率
:param num_iteration: 迭代次数
:param print_cost: 是否打印成本值,每100次打印一次
:param isPlot: 是否绘制出误差的图谱
:return: parameters - 模型学习的参数,然后他们可以用来预测
"""
np.random.seed(1)
costs = []
parameters = initialize_parameters_deep(layers_dims)
for i in range(0,num_iterations):
AL , caches = L_model_forward(X,parameters)
cost = compute_cost(AL,Y)
grads = L_model_backward(AL,Y,caches)
parameters = update_parameters(parameters,grads,learning_rate)
#打印成本值,如果print_cost=False则忽略
if i % 100 == 0:
#记录成本
costs.append(cost)
#是否打印成本值
if print_cost:
print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost))
#迭代完成,根据条件绘制图
if isPlot:
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
#到此为止就可以加载数据集
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()
train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y
#正式训练
"""
#两层--
n_x = 12288
n_h = 7
n_y = 1
layers_dims = (n_x, n_h, n_y)
parameters = two_layer_model(train_x, train_set_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True,isPlot=True)
"""
""" """
#多层--
layers_dims = [12288, 20, 7, 4, 1]
parameters = L_layer_model(train_x, train_set_y, layers_dims , num_iterations = 2500, print_cost=True,isPlot=True)
#预测函数
def predict(X, Y, parameters):
"""
该函数用于预测L层神经网络的结果,当然也包含两层
:param X:测试集
:param Y:标签
:param parameters:训练模型的参数
:return:p 给定数据集X的预测
"""
m = X.shape[1]
n = len(parameters) // 2
p = np.zeros((1, m))
#根据参数前向传播
probas, caches = L_model_forward(X, parameters)
for i in range(0, probas.shape[1]):
if probas[0, i] > 0.5:
p[0, i] = 1
else:
p[0, i] = 0
print("" + str(float(np.sum((p == Y)) / m)))
return p
predictions_train = predict(train_x, train_y, parameters)#训练集
predictions_test = predict(test_x, test_y, parameters)#测试集
def print_mislabeled_images(classes, X, y, p):
"""
绘制预测和实际不同的图像。
X - 数据集
y - 实际的标签
p - 预测
"""
a = p + y
mislabeled_indices = np.asarray(np.where(a == 1))
plt.rcParams['figure.figsize'] = (40, 40)
num_images = len(mislabeled_indices[0])
for i in range(num_images):
index = mislabeled_indices[1][i]
plt.subplot(2, num_images, i + 1)
plt.imshow(X[:, index].reshape(64, 64, 3), interpolation='nearest')
plt.show()
plt.axis('off')
plt.title(
"Prediction: " + classes[int(p[0, index])].decode("utf-8") + " \n Class: " + classes[y[0, index]].decode(
"utf-8"))
#print_mislabeled_images(classes, test_x, test_y, predictions_test)
## START CODE HERE ##
my_image = "cat.png" # change this to the name of your image file
my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)
## END CODE HERE ##
num_px = 64
fname = my_image
image = np.array(matplotlib.pyplot.imread(fname))
#my_image = scipy.misc.imresize(image, size=(num_px,num_px))
image =transform.resize(image, (64, 64))
my_image = image.reshape(num_px*num_px*3,1)
my_predicted_image = predict(my_image, my_label_y, parameters)
plt.imshow(image)
plt.show()
print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
接下来,搭建神经网络