时间复杂度分析
时间复杂度定义:
在计算机科学中,算法的时间复杂度是一个函数,它定性描述了该算法的运行时间。这是一个关于代表算法输入值的字符串的长度的函数。时间复杂度用大O符号表述,不包括这个函数的低阶项和首项系数。
算法复杂度分为时间复杂度和空间复杂度。其作用:时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。
时间复杂度算法:
一般情况下,大写O()来表示算法的时间复杂度写法,通常叫做大O记法。
一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。
O(1):常数阶 O(n):线性阶 O(n^2):平方阶
大O推导法:
1.用常数1取代运行时间中的所有加法常数。
2.在修改后的运行函数中,只保留最高阶项。
3.如果最高阶项存在且不是1,则去除与这个项相乘的常数
举例来说明一下时间复杂度分析:
当 N >= 2 的时候,f(n) = n^2 总是大于 T(n) = n + 2 的,于是我们说 f(n) 的增长速度是大于或者等于 T(n) 的,也说 f(n) 是 T(n) 的上界,可以表示为 T(n) = O(f(n))。因为f(n) 的增长速度是大于或者等于 T(n) 的,即T(n) = O(f(n)),所以我们可以用 f(n) 的增长速度来度量 T(n) 的增长速度,所以我们说这个算法的时间复杂度是 O(f(n))。算法的时间复杂度,用来度量算法的运行时间,记作: T(n) = O(f(n))。它表示随着 输入大小n 的增大,算法执行需要的时间的增长速度可以用 f(n) 来描述。显然如果 T(n) = n^2,那么 T(n) = O(n^2),T(n) = O(n^3),T(n) = O(n^4) 都是成立的,但是因为第一个 f(n) 的增长速度与 T(n) 是最接近的,所以第一个是最好的选择,所以我们说这个算法的复杂度是 O(n^2) 。
1.对于一个循环,假设循环体的时间复杂度为 O(n),循环次数为 m,则这个
循环的时间复杂度为 O(n×m)。
void aFunc(int n) {
for(int i = 0; i < n; i++) { // 循环次数为 n
printf("Hello, World!\n"); // 循环体时间复杂度为 O(1)
}
此时时间复杂度为 O(n × 1),即 O(n)。
2.对于多个循环,假设循环体的时间复杂度为 O(n),各个循环的循环次数分别是a, b, c…,则这个循环的时间复杂度为 O(n×a×b×c…)。分析的时候应该由里向外分析这些循环。
void aFunc(int n) {
for(int i = 0; i < n; i++) { // 循环次数为 n
for(int j = 0; j < n; j++) { // 循环次数为 n
printf("Hello, World!\n"); // 循环体时间复杂度为 O(1)
}
}
}
此时时间复杂度为 O(n × n × 1),即 O(n^2)。
3.对于顺序执行的语句或者算法,总的时间复杂度等于其中最大的时间复杂度。
void aFunc(int n) {
// 第一部分时间复杂度为 O(n^2)
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
// 第二部分时间复杂度为 O(n)
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。
4.对于条件判断语句,总的时间复杂度等于其中 时间复杂度最大的路径 的时间复杂度。
void aFunc(int n) {
if (n >= 0) {
// 第一条路径时间复杂度为 O(n^2)
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
printf("输入数据大于等于零\n");
}
}
} else {
// 第二条路径时间复杂度为 O(n)
for(int j = 0; j < n; j++) {
printf("输入数据小于零\n");
}
}
}
此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。
我的博客