判断一颗二叉树是不是完全二叉树

本文介绍了一种通过广度优先搜索(BFS)来判断一棵二叉树是否为完全二叉树的方法。完全二叉树的特点是除了最后一层外,其他层的节点数都达到最大,且最后一层的节点都连续集中在最左侧。文章提供了C++实现代码,并详细解释了判断逻辑。


还有一种特殊的完全二叉树就是叶子节点都在同一层的,如下图

完全二叉树定义,若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

思路是:用bfs,一层一层的遍历二叉树的节点,一但遍历到空节点,那么不在往队列里加入节点了,遍历队列里的已有元素,若有一个不是空节点,那么就不是完全二叉树,若全是空节点那么就是完全二叉树

#include<stdio.h>
#include<iostream>
#include<queue>
#include<stdlib.h>
using namespace std;
struct node
{
    char v;
    int num;
    int depth;
    struct node*ls,*rs;
};


struct node*head;
struct node*build()
{
    char ch;
    cin>>ch;
    if(ch=='#') return NULL;
    struct node*p=(struct node*)malloc(sizeof(struct node));
    p->v=ch;
    p->ls=build();
    p->rs=build();
    return p;

};


int judge()
{
    if(!head) return 0; //如果树的根节点不存在,即树不存在,认为不是完全二叉树
    struct node*p;
    queue<struct node*>q;
    while(!q.empty()) q.pop();
    q.push(head);//根节点入队
    while(p=q.front())//队首元素不为NULL代表该节点存在,拓展这个节点的儿子节点,若为NULL,说明搜索到的节点为空节点了,那么就遍历队列里已有元素
    {
        q.push(p->ls);
        q.push(p->rs);
        q.pop();
    }
    while(!q.empty())
    {
        if(q.front()) return 0;
        q.pop();

    }
    return 1;

}
void first(struct node *p)
{
    if(!p) return ;
    cout<<"/节点的值:"<<p->v<<endl;
    first(p->ls);
    first(p->rs);
}

int main()
{



    head=build();

    if(judge())
        cout<<"yes"<<endl;
    else
        cout<<"no"<<endl;

    return 0;
}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值