数据库常见索引解析(B树,B-树,B+树,B*树,位图索引,Hash索引)

本文深入解析数据库索引的原理及类型,包括B树、B+树、位图和哈希索引,探讨索引如何提升查询速度,以及各自的适用场景与限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.什么是索引

数据库索引好比是一本书前面的目录,能加快数据库的查询速度。

 

2.索引的优缺点

优点:

 1.大大加快数据的检索速度

 2.创建唯一性索引,保证数据库表中每一行数据的唯一性

 3.加速表和表之间的连接

 4.在使用分组和排序子句进行数据检索时,可以显著减少查询中分组和排序的时间

缺点

1.索引需要占用数据表以外的物理存储空间

2.创建索引和维护索引要花费一定的时间

3.当对表进行更新操作时,索引需要被重建,这样降低了数据的维护速度

 

3.索引类型

(1)唯一索引:UNIQUE 

例如在学生表中给学号字段创建唯一索引:create unique index stusno on student(sno);

表明此索引的每一个索引值只对应唯一的数据记录,对于单列唯一性索引,这保证单列不包含重复的值。对于多了唯一性索引,保证多列值得组合不重复

(2)主键索引  primary key 即唯一+非空

数据库关系图中在给表定义主键将自动创建主键索引,该索引要求主键中的每个值都唯一且非空。

(3)聚集索引(又叫聚簇索引):cluster

在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。如果某索引不是聚集索引,则表中行的物理顺序与键值得逻辑顺序不匹配。与非聚集索引相比,聚集索引通常提供更快的数据访问

 

4.索引的实现原理(这里我们能知道为什么索引会加快查询速度)

 

 

即二叉搜索树   

1.所有非叶子结点至多拥有两个儿子(left和right)

2.所有节点存储一个关键字

3.非叶子节点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树

 

如下图所示

     

 

二叉搜索树搜索路径:

从根结点开始,如果查询的关键字与结点的关键字相等,则命中。否则,如果查询的关键字比结点关键字小,就进入左儿子,反之大则进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到对应的关键字。

拿关键字28来举例,首先与根结点35比较,小则进入左儿子17,又与17比较,大则进入右儿子28,相等则命中。

       如果二叉搜索树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么二叉搜索树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

如:

但二叉搜索树在经过多次插入和删除后,有可能导致不同的结构:

右边的也是一个二叉搜索树,但其搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用二叉搜索树还要考虑尽可能让二叉搜索树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题。

 

B-树(B树)

是一种多路搜索树(并不是二叉的),任意一棵m阶B-树:

       1.定义任意非叶子结点最多只有M个儿子;且M>2;

       2.根结点的儿子数为[2, M];

       3.除根结点以外的非叶子结点的儿子数为[M/2,M];

       4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

       5.非叶子结点的关键字个数=指向儿子的指针个数-1;

       6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

       7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

       8.所有叶子结点位于同一层;

       如:(M=3)

 

 

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

 

B+树

  B+树是B-树的变体,也是一种多路搜索树:

       1.其定义基本与B-树同,除了:

       2.非叶子结点的子树指针与关键字个数相同;

       3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

       5.为所有叶子结点增加一个链指针;

       6.所有关键字都在叶子结点出现;

       如:(M=3)

 

 

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

       B+的特性:

       1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

       2.不可能在非叶子结点命中;

       3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

       4.更适合文件索引系统;

 

位图索引

1.案例

有张表名为table的表,由三列组成,分别是姓名、性别和婚姻状况,其中性别只有男和女两项,婚姻状况由已婚、未婚、离婚这三项,该表共有100w个记录。现在有这样的查询:     select * from table where Gender=‘男’ and Marital=“未婚”;

姓名(Name)

性别(Gender)

婚姻状况(Marital)

张三

已婚

李四

已婚

王五

未婚

赵六

离婚

孙七

未婚

...

...

...

1)不使用索引

  不使用索引时,数据库只能一行行扫描所有记录,然后判断该记录是否满足查询条件。

2)B树索引

  对于性别,可取值的范围只有'男','女',并且男和女可能各站该表的50%的数据,这时添加B树索引还是需要取出一半的数据, 因此完全没有必要。相反,如果某个字段的取值范围很广,几乎没有重复,比如身份证号,此时使用B树索引较为合适。事实上,当取出的行数据占用表中大部分的数据时,即使添加了B树索引,数据库如oracle、MySQL也不会使用B树索引,很有可能还是一行行全部扫描。

2.位图索引出马

如果用户查询的列的基数非常的小, 即只有的几个固定值,如性别、婚姻状况、行政区等等。要为这些基数值比较小的列建索引,就需要建立位图索引。

对于性别这个列,位图索引形成两个向量,男向量为10100...,向量的每一位表示该行是否是男,如果是则位1,否为0,同理,女向量位01011。

RowId

1

2

3

4

5

...

1

0

1

0

0

 

0

1

0

1

1

 ...

  对于婚姻状况这一列,位图索引生成三个向量,已婚为11000...,未婚为00100...,离婚为00010...。

RowId

1

2

3

4

5

...

已婚

1

1

0

0

0

 

未婚

0

0

1

0

1

 

离婚

0

0

0

1

0

 

   当我们使用查询语句“select * from table where Gender=‘男’ andMarital=“未婚”;”的时候 首先取出男向量10100...,然后取出未婚向量00100...,将两个向量做and操作,这时生成新向量00100...,可以发现第三位为1,表示该表的第三行数据就是我们需要查询的结果。 

RowId

1

2

3

4

5

1

0

1

0

0

and

 

 

 

 

 

未婚

0

0

1

0

1

结果

0

0

1

0

0

3.位图索引适应场景

上面讲了,位图索引适合只有几个固定值的列,如性别、婚姻状况、行政区等等,而身份证号这种类型不适合用位图索引。

  此外,位图索引适合静态数据,而不适合索引频繁更新的列。举个例子,有这样一个字段busy,记录各个机器的繁忙与否,当机器忙碌时,busy为1,当机器不忙碌时,busy为0。

  这个时候有人会说使用位图索引,因为busy只有两个值。好,我们使用位图索引索引busy字段!假设用户A使用update更新某个机器的busy值,比如update table set table.busy=1 where rowid=100;,但还没有commit,而用户B也使用update更新另一个机器的busy值,update table set table.busy=1 where rowid=12; 这个时候用户B怎么也更新不了,需要等待用户A commit。

  原因:用户A更新了某个机器的busy值为1,会导致所有busy为1的机器的位图向量发生改变,因此数据库会将busy=1的所有行锁定,只有commit之后才解锁。

 

Hash索引

索引列会被存储在匹配到的hash bucket里面的表里,这个表里会有实际的数据行指针,再根据实际的数据行指针查找对应的数据行。

概括来说,要查找一行数据或者处理一个where子句,SQL Server引擎需要做下面几件事

1、根据where条件里面的参数生成合适的哈希函数

2、索引列进行匹配,匹配到对应hash bucket,找到对应hash bucket意味着也找到了对应的数据行指针(row pointer)

3、读取数据

哈希索引比起B树索引简单,因为它不需要遍历B树,所以访问速度会更快

Hash索引的缺点:

1、因为Hash索引比较的是经过Hash计算的值,所以只能进行等式比较,不能用于范围查询

2、由于哈希值是按照顺序排列的,但是哈希值映射的真正数据在哈希表中就不一定按照顺序排列,所以无法利用Hash索引来加速任何排序操作

3、不能用部分索引键来搜索,因为组合索引在计算哈希值的时候是一起计算的。

4、当哈希值大量重复且数据量非常大时(会产生冲突),其检索效率并没有Btree索引高的。

 

 

 

 

 

内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
内容概要:本文深入探讨了与液冷数据中心废热集成的跨临界压缩 CO₂储能系统(CCES)。研究构建了单级压缩(System-CP)和双级压缩(System-VP)两种系统,通过准动态模型分析其能量和㶲性能,并开发经济模型评估其经济性。研究结果显示,System-CP 和 System-VP 的往返效率分别为 64.67% 和 67.41%,储能密度分别为 0.24 和 0.26 kW·h/m³。对于 15 MW × 5 h 的储能容量,两种系统的总资本成本分别为 4.7784 亿和 4.3741 亿美元,投资回收期分别为 14.76 年和 12.39 年。此外,研究还揭示了关键参数如压力比、热源温度等对系统性能的影响,提出了优化建议和技术实现路径。 适合人群:从事能源管理、数据中心运营、储能技术研发的专业人员以及关注绿色能源和碳减排的研究者。 使用场景及目标:①评估液冷数据中心与跨临界 CO₂储能系统的集成方案;②优化数据中心废热利用效率;③分析不同压缩系统在储能密度、成本和效率方面的差异;④探索系统集成的经济性和技术可行性。 其他说明:该研究不仅提供了详细的热力学和经济性分析,还通过实证数据验证了系统的技术经济可行性,为绿色数据中心的建设提供了量化决策依据。文中还讨论了未来的研究方向,如低温差高效热泵材料、自适应压力容器设计等,旨在进一步提升系统的性能和经济性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值