bert常用基准数据集:GLUE数据集介绍以及数据集资源

GLUE是一个用于自然语言理解的多任务基准,包含9个任务如CoLA、SST-2等。本文介绍了每个任务的数据集特性,如CoLA的语法可接受性分类,SST-2的情感分析,MRPC和QQP的释义判断,以及MNLI等的自然语言推理。模型如BERT会在此基准上进行测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GLUE基准数据集介绍及下载

介绍:

所有任务都是单句或者句子对分类,除了STS-B是一个回归任务。MNLI有3个类别,所有其他分类任务都是2个类别。

像BERT、XLNet、RoBERTa、ERINE、T5等知名模型都会在此基准上进行测试。目前,大家要把预测结果上传到官方的网站上,官方会给出测试的结果。

GLUE的论文为:GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding

GLUE共有九个任务,分别是CoLA、SST-2、MRPC、STS-B、QQP、MNLI、QNLI、RTE、WNLI。如下图图2所示,可以分为三类,分别是单句任务,相似性和释义任务,所有任务都是单句或者句子对分类,除了STS-B是一个回归任务。MNLI有3个类别,所有其他分类任务都是2个类别。

1 CoLA数据集

CoLA(The Corpus of Linguistic Acceptability,语言可接受性语料库),单句子分类任务,语料来自语言理论的书籍和期刊,每个句子被标注为是否合乎语法的单词序列。本任务是一个二分类任务,标签共两个,分别是0和1,其中0表示不合乎语法,1表示合乎语法。

样本个数:训练集8, 551个,开发集1, 043个,测试集1, 063个。
任务:可接受程度,合乎语法与不合乎语法二分类。

2 SST-2数据集

SST-2(The Stanford Sentiment Treebank,斯坦福情感树库),单句子分类任务,包含电影评论中的句子和它们情感的人类注释。这项任务是给定句子的情感,类别分为两类正面情感(positive,样本标签对应为1)和负面情感(negative,样本标签对应为0),并且只用句子级别的标签。也就是,本任务也是一个二分类任务,针对句子级别,分为正面和负面情感。

样本个数:训练集67, 350个,开发集873个,测试集1, 821个。
任务:情感分类,正面情感和负面情感二分类。

3 MRPC数据集

MRPC(The Microsoft Research Paraphrase Corpus,微软研究院释义语料库),相似性和释义任务,是从在线新闻源中自动抽取句子对语料库,并人工注释句子对中的句子是否在语义上等效。类别并不平衡,其中68%的正样本,所以遵循常规的做法,报告准确率(accuracy)和F1值。

样本个数:训练集3, 668个,开发集408个,测试集1, 725个。

任务:是否释义二分类,是释义,不是释义两类。
评价准则:准确率(accuracy)和F1值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值