Java设计模式之策略模式

本文深入解析策略模式,一种允许算法在运行时改变的行为设计模式。通过实例演示如何使用策略模式解决算法多样化问题,避免if...else带来的代码臃肿,增强代码的可扩展性和维护性。

策略模式

在策略模式(Strategy Pattern)中,一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为型模式。

在策略模式中,我们创建表示各种策略的对象和一个行为随着策略对象改变而改变的 context 对象。策略对象改变 context 对象的执行算法。

简介:

Define a family of algorithms,encapsulate each one,and make them interchangeable.
定义一组算法,将每个算法都封装起来,并且使它们之间可以互换。

  策略模式 本质:分离算法,选择实现

主要解决

     在有多种算法相似的情况下,使用 if...else 或 switch...case 所带来的复杂性和臃肿性。

优缺点

优点

  • 算法多样性,且具备自由切换功能;
  • 有效避免多重条件判断,增强了封装性,简化了操作,降低出错概率;
  • 扩展性良好,策略类遵顼 里氏替换原则,可以很方便地进行策略扩展;

缺点

   1、策略类会增多。 2、所有策略类都需要对外暴露。

使用场景

  • 针对同一类型问题,有多种处理方式,每一种都能独立解决问题;
  • 算法需要自由切换的场景;
  • 需要屏蔽算法规则的场景;

 策略模式 的通用 UML 类图:

 

从 UML 类图中,我们可以看到,策略模式 主要包含三种角色:

  • 上下文角色(Context):用来操作策略的上下文环境,屏蔽高层模块(客户端)对策略,算法的直接访问,封装可能存在的变化;
  • 抽象策略角色(Strategy):规定策略或算法的行为;
  • 具体策略角色(ConcreteStrategy):具体的策略或算法实现;

策略模式 的通用代码:

class Client {
    public static void main(String[] args) {
        //选择一个具体策略
        IStrategy strategy = new ConcreteStrategyA();
        //来一个上下文环境
        Context context = new Context(strategy);
        //客户端直接让上下文环境执行算法
        context.algorithm();
    }

    //抽象策略类 Strategy
    interface IStrategy {
        void algorithm();
    }

    //具体策略类 ConcreteStrategy
    static class ConcreteStrategyA implements IStrategy {

        @Override
        public void algorithm() {
            System.out.println("Strategy A");
        }
    }

    //具体策略类 ConcreteStrategy
    static class ConcreteStrategyB implements IStrategy {

        @Override
        public void algorithm() {
            System.out.println("Strategy B");
        }
    }

    //上下文环境
    static class Context {
        private IStrategy mStrategy;

        public Context(IStrategy strategy) {
            this.mStrategy = strategy;
        }

        public void algorithm() {
            this.mStrategy.algorithm();
        }
    }
}

举个例子:

例子:假设现在有两个数与一个运算符,要求使用该运算符操作这两个数。
分析:直接思路:通过判断运算符符号,对这两个数进行运算。代码如下所示:

 static class Calculator {
        private static final String SYMBOL_ADD = "+";
        private static final String SYMBOL_SUB = "-";

        public int calc(int a, int b, final String symbol) {
            int result = 0;
            if (SYMBOL_ADD.equals(symbol)) {
                result = a + b;
            } else if (SYMBOL_ADD.equals(symbol)) {
                result = a - b;
            }
            return result;
        }
    }

       但是这样写的话,如果我们现在要扩展乘法*或除法/运算,那么就要在calc方法内增加对应的if...else判断,代码臃肿并且扩展性太低。
       而如果采用策略模式,将各种运算符的计算都归并到对应具体策略,这样,就能简化代码并且带来很好的扩展性,具体代码如下:

class Client {
    public static void main(String[] args) {
        ICalculator calculator = new Add();
        Context context = new Context(calculator);
        int result = context.calc(1,2);
        System.out.println(result);
    }

    interface ICalculator {
        int calc(int a, int b);
    }

    static class Add implements ICalculator {
        @Override
        public int calc(int a, int b) {
            return a + b;
        }
    }

    static class Sub implements ICalculator {
        @Override
        public int calc(int a, int b) {
            return a - b;
        }
    }

    static class Multi implements ICalculator {
        @Override
        public int calc(int a, int b) {
            return a * b;
        }
    }

    static class Divide implements ICalculator {
        @Override
        public int calc(int a, int b) {
            return a / b;
        }
    }

    static class Context {
        private ICalculator mCalculator;

        public Context(ICalculator calculator) {
            this.mCalculator = calculator;
        }

        public int calc(int a, int b) {
            return this.mCalculator.calc(a, b);
        }
    }
}

从上面代码中,我们可以看到,我们完全消除了对运算符号进行判断的哪些if...else的冗余代码,取而代之的是客户端直接决定使用哪种算法,然后交由上下文获取结果。并且上面代码中我们还扩展了乘法Multi和除法Divide运算,所需要做的就只是扩展相应的策略类而已。

内容概要:本文详细介绍了一个基于C++的养老院管理系统的设计与实现,旨在应对人口老龄化带来的管理挑战。系统通过整合住户档案、健康监测、护理计划、任务调度等核心功能,构建了从数据采集、清洗、AI风险预测到服务调度与可视化的完整技术架构。采用C++高性能服务端结合消息队列、规则引擎和机器学习模型,实现了健康状态实监控、智能任务分配、异常告警推送等功能,并解决了多源数据整合、权限安全、老旧硬件兼容等实际问题。系统支持模块化扩展与流程自定义,提升了养老服务效率、医护协同水平和住户安全保障,同为运营决策提供数据支持。文中还提供了关键模块的代码示例,如健康指数算法、任务调度器和日志记录组件。; 适合人群:具备C++编程基础,从事软件开发系统设计工作1-3年的研发人员,尤其是关注智慧养老、医疗信息系统开发的技术人员。; 使用场景及目标:①学习如何在真实项目中应用C++构建高性能、可扩展的管理系统;②掌握多源数据整合、实健康监控、任务调度与权限控制等复杂业务的技术实现方案;③了解AI模型在养老场景中的落地方式及系统架构设计思路。; 阅读建议:此资源不仅包含系统架构与模型描述,还附有核心代码片段,建议结合整体设计逻辑深入理解各模块之间的协同机制,并可通过重构扩展代码来加深对系统工程实践的掌握。
内容概要:本文详细介绍了一个基于C++的城市交通流量数据可视化分析系统的设计与实现。系统涵盖数据采集与预处理、存储与管理、分析建模、可视化展示、系统集成扩展以及数据安全与隐私保护六大核心模块。通过多源异构数据融合、高效存储检索、实处理分析、高交互性可视化界面及模块化架构设计,实现了对城市交通流量的实监控、历史趋势分析与智能决策支持。文中还提供了关键模块的C++代码示例,如数据采集、清洗、CSV读写、流量统计、异常检测及基于SFML的柱状图绘制,增强了系统的可实现性与实用性。; 适合人群:具备C++编程基础,熟悉数据结构与算法,有一定项目开发经验的高校学生、研究人员及从事智能交通系统开发的工程师;适合对大数据处理、可视化技术和智慧城市应用感兴趣的技术人员。; 使用场景及目标:①应用于城市交通管理部门,实现交通流量实监测与拥堵预警;②为市民出行提供路径优化建议;③支持交通政策制定与信号灯配优化;④作为智慧城市建设中的智能交通子系统,实现与其他城市系统的数据协同。; 阅读建议:建议结合文中代码示例搭建开发环境进行实践,重点关注多线程数据采集、异常检测算法与可视化实现细节;可进一步扩展机器学习模型用于流量预测,并集成真实交通数据源进行系统验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值