数据结构实验之栈与队列一:进制转换

本文介绍了一个简单的算法实现,用于将十进制非负整数转换为指定的R进制数(2≤R≤9)。通过使用栈的数据结构来辅助计算过程,该算法能够高效地完成转换任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  数据结构实验之栈与队列一:进制转换

Problem Description

输入一个十进制非负整数,将其转换成对应的 R (2 <= R <= 9) 进制数,并输出。

Input

第一行输入需要转换的十进制非负整数;
第二行输入 R。

Output

输出转换所得的 R 进制数。

Example Input
1279
8
Example Output

2377

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

#include<stdio.h>
#include<stdlib.h>


typedef int elemtype;
typedef int status;
#define MAXSIZE 100
#define OVERFLOW -2
#define another 50
#define true 1
#define false 0


typedef struct{
    elemtype *base;
    elemtype *top;
    int stacksize;
}Sqstack;


status isEmpty(Sqstack &S){
    if(S.top == S.base)
        return true;
    else
        return false;
}


void initStack(Sqstack &S){
    S.base = new elemtype[MAXSIZE];
    S.top = S.base;
    S.stacksize = MAXSIZE;
}


elemtype getTop(Sqstack &S){
    if(S.base == S.top)
        return false;
    else
        return *(S.top-1);
}


void Push(Sqstack &S, elemtype e){
    if(S.top-S.base >= S.stacksize){
        S.base = (elemtype *)realloc(S.base,(another+S.stacksize)*sizeof(elemtype));
        S.top = S.base + S.stacksize;
        S.stacksize += another;
    }
    *S.top++ = e;
}


int Pop(Sqstack &S, elemtype &e){
    return e = *--S.top;
}


int main(){
    int n, r;
    Sqstack S;
    initStack(S);
    scanf("%d %d", &n, &r);
    if(n < 0)
        printf("-"),n = -n;
    if(n == 0)
        printf("0");
    while(n){
        int cnt = n%r;
        n = n/r;
        Push(S,cnt);
    }
    while(!isEmpty(S)){
        int cnt = Pop(S, cnt);
        printf("%d",cnt);
    }
    printf("\n");
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值