快速选择
用于求解 Kth Element 问题,也就是第 K 个元素的问题。
可以使用快速排序的 partition() 进行实现。需要先打乱数组,否则最坏情况下时间复杂度为 O(N2)。
堆
用于求解 TopK Elements 问题,也就是 K 个最小元素的问题。可以维护一个大小为 K 的最小堆,最小堆中的元素就是最小元素。最小堆需要使用大顶堆来实现,大顶堆表示堆顶元素是堆中最大元素。这是因为我们要得到 k 个最小的元素,因此当遍历到一个新的元素时,需要知道这个新元素是否比堆中最大的元素更小,更小的话就把堆中最大元素去除,并将新元素添加到堆中。所以我们需要很容易得到最大元素并移除最大元素,大顶堆就能很好满足这个要求。
堆也可以用于求解 Kth Element 问题,得到了大小为 k 的最小堆之后,因为使用了大顶堆来实现,因此堆顶元素就是第 k 大的元素。
快速选择也可以求解 TopK Elements 问题,因为找到 Kth Element 之后,再遍历一次数组,所有小于等于 Kth Element 的元素都是 TopK Elements。
可以看到,快速选择和堆排序都可以求解 Kth Element 和 TopK Elements 问题。
1. Kth Element
215. Kth Largest Element in an Array (Medium)
Input: [3,2,1,5,6,4] and k = 2
Output: 5
题目描述:找到倒数第 k 个的元素。
排序 :时间复杂度 O(NlogN),空间复杂度 O(1)
public int findKthLargest(int[] nums, int k) { Arrays.sort(nums); return nums[nums.length - k]; }
堆 :时间复杂度 O(NlogK),空间复杂度 O(K)。
public int findKthLargest(int[] nums, int k) { PriorityQueue<Integer> pq = new PriorityQueue<>(); // 小顶堆 for (int val : nums) { pq.add(val); if (pq.size() > k) // 维护堆的大小为 K pq.poll(); } return pq.peek(); }
快速选择 :时间复杂度 O(N),空间复杂度 O(1)
public int findKthLargest(int[] nums, int k) { k = nums.length - k; int l = 0, h = nums.length - 1; while (l < h) { int j = partition(nums, l, h); if (j == k) { break; } else if (j < k) { l = j + 1; } else { h = j - 1; } } return nums[k]; } private int partition(int[] a, int l, int h) { int i = l, j = h + 1; while (true) { while (a[++i] < a[l] && i < h) ; while (a[--j] > a[l] && j > l) ; if (i >= j) { break; } swap(a, i, j); } swap(a, l, j); return j; } private void swap(int[] a, int i, int j) { int t = a[i]; a[i] = a[j]; a[j] = t; }