Leetcode 题解 -- 排序--快速选择

本文详细解析了KthElement与TopKElements问题的解决方法,包括快速选择、堆排序及快速排序等算法的应用。快速选择适用于求解KthElement问题,堆排序适合TopKElements问题,同时两者均可互用。文章提供了具体的代码实现,如快速选择的partition函数,堆排序的小顶堆实现,以及快速排序的sort函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

快速选择

用于求解 Kth Element 问题,也就是第 K 个元素的问题。

可以使用快速排序的 partition() 进行实现。需要先打乱数组,否则最坏情况下时间复杂度为 O(N2)。

用于求解 TopK Elements 问题,也就是 K 个最小元素的问题。可以维护一个大小为 K 的最小堆,最小堆中的元素就是最小元素。最小堆需要使用大顶堆来实现,大顶堆表示堆顶元素是堆中最大元素。这是因为我们要得到 k 个最小的元素,因此当遍历到一个新的元素时,需要知道这个新元素是否比堆中最大的元素更小,更小的话就把堆中最大元素去除,并将新元素添加到堆中。所以我们需要很容易得到最大元素并移除最大元素,大顶堆就能很好满足这个要求。

堆也可以用于求解 Kth Element 问题,得到了大小为 k 的最小堆之后,因为使用了大顶堆来实现,因此堆顶元素就是第 k 大的元素。

快速选择也可以求解 TopK Elements 问题,因为找到 Kth Element 之后,再遍历一次数组,所有小于等于 Kth Element 的元素都是 TopK Elements。

可以看到,快速选择和堆排序都可以求解 Kth Element 和 TopK Elements 问题。

1. Kth Element

215. Kth Largest Element in an Array (Medium)

Input: [3,2,1,5,6,4] and k = 2
Output: 5

题目描述:找到倒数第 k 个的元素。

排序 :时间复杂度 O(NlogN),空间复杂度 O(1)

public int findKthLargest(int[] nums, int k) {
    Arrays.sort(nums);
    return nums[nums.length - k];
}

 :时间复杂度 O(NlogK),空间复杂度 O(K)。

public int findKthLargest(int[] nums, int k) {
    PriorityQueue<Integer> pq = new PriorityQueue<>(); // 小顶堆
    for (int val : nums) {
        pq.add(val);
        if (pq.size() > k)  // 维护堆的大小为 K
            pq.poll();
    }
    return pq.peek();
}

快速选择 :时间复杂度 O(N),空间复杂度 O(1)

public int findKthLargest(int[] nums, int k) {
    k = nums.length - k;
    int l = 0, h = nums.length - 1;
    while (l < h) {
        int j = partition(nums, l, h);
        if (j == k) {
            break;
        } else if (j < k) {
            l = j + 1;
        } else {
            h = j - 1;
        }
    }
    return nums[k];
}

private int partition(int[] a, int l, int h) {
    int i = l, j = h + 1;
    while (true) {
        while (a[++i] < a[l] && i < h) ;
        while (a[--j] > a[l] && j > l) ;
        if (i >= j) {
            break;
        }
        swap(a, i, j);
    }
    swap(a, l, j);
    return j;
}

private void swap(int[] a, int i, int j) {
    int t = a[i];
    a[i] = a[j];
    a[j] = t;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值