从零开始学机器学习——线性和多项式回归

首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns

在之前的学习中,我们已经对数据的准备工作以及数据可视化有了一定的了解。今天,我们将深入探讨基本线性回归和多项式回归的概念与应用。

如果在过程中涉及到一些数学知识,大家也不必感到畏惧,我会逐步为大家进行详细的讲解,以便大家能够更好地理解这些内容。希望通过今天的学习,能够帮助大家建立起对这两种回归方法的清晰认识,并掌握它们在实际问题中的应用。

线性和多项式回归

通常情况下,回归分析主要分为两种类型:线性回归和多项式回归。线性回归旨在通过一条直线来描述变量之间的关系,而多项式回归则允许我们使用多项式函数来更灵活地捕捉数据的复杂趋势。为了帮助大家直观地理解这两种回归方法,我们可以通过图片进行展示。

image

其实,线性回归和多项式回归之间的区别,可以简单地归结为直线与曲线的差异。

基本线性回归

线性回归练习的目标在于能够绘制出一条理想的回归线,那么什么才算是“完美的线”呢?简而言之,完美的线是指使所有分散的数据点到这条线的距离最短的情况。通常,我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的小雨

您的支持是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值