首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns
在之前的学习中,我们已经对数据的准备工作以及数据可视化有了一定的了解。今天,我们将深入探讨基本线性回归和多项式回归的概念与应用。
如果在过程中涉及到一些数学知识,大家也不必感到畏惧,我会逐步为大家进行详细的讲解,以便大家能够更好地理解这些内容。希望通过今天的学习,能够帮助大家建立起对这两种回归方法的清晰认识,并掌握它们在实际问题中的应用。
线性和多项式回归
通常情况下,回归分析主要分为两种类型:线性回归和多项式回归。线性回归旨在通过一条直线来描述变量之间的关系,而多项式回归则允许我们使用多项式函数来更灵活地捕捉数据的复杂趋势。为了帮助大家直观地理解这两种回归方法,我们可以通过图片进行展示。
其实,线性回归和多项式回归之间的区别,可以简单地归结为直线与曲线的差异。
基本线性回归
线性回归练习的目标在于能够绘制出一条理想的回归线,那么什么才算是“完美的线”呢?简而言之,完美的线是指使所有分散的数据点到这条线的距离最短的情况。通常,我们