Hadoop中mapreduce中的shuffle执行流程

本文详细介绍了Hadoop MapReduce的执行过程,包括Map任务如何读取HDFS文件,解析行数据,调用map函数处理数据,以及Reduce任务如何合并和排序多个Map任务的输出,最终将结果写回HDFS。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

执行过程  

1、Map任务处理  

1.1 读取HDFS中的文件。每一行解析成一个<k,v>。每一个键值对调用一次map函数。                        

<0,hello you>  <10,hello me>  

1.2 覆盖map(),接收1.1产生的<k,v>,进行处理,转换为新的<k,v>输出。   <hello,1> <you,1> <hello,1> <me,1>  

1.3 对1.2输出的<k,v>进行分区。默认分为一个区。  

1.4 对不同分区中的数据进行排序(按照k)、分组。分组指的是相同key的value放到一个集合中。   排序后:<hello,1> <hello,1> <me,1> <you,1> 分组后:<hello,{1,1}><me,{1}><you,{1}>  

1.5 (可选)对分组后的数据进行归约:Combiner。  

2、Reduce任务处理  

2.1 多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上。  

2.2 对多个map的输出进行合并、排序。覆盖reduce函数,接收的是分组后的数据,实现自己的业务   逻辑,<hello,2> <me,1> <you,1>处理后,产生新的<k,v>输出。  

2.3 对reduce输出的<k,v>写到HDFS中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值