【题目链接】
【思路要点】
- 考虑对有根仙人掌的圆方树计数,定义子树大小为子树内圆点的个数。
- 令子树大小为 i i i 的圆点和方点各有 r i , s i r_i,s_i ri,si 个,则其指数型生成函数分别为
R ( x ) = ∑ i = 1 r i i ! x i , S ( x ) = ∑ i = 1 s i i ! x i R(x)=\sum_{i=1}\frac{r_i}{i!}x^i,S(x)=\sum_{i=1}\frac{s_i}{i!}x^i R(x)=i=1∑i!rixi,S(x)=i=1∑i!sixi- 稍加推导可得
R ( x ) = x e S ( x ) , S ( x ) = R ( x ) + R ( x ) 2 2 + R ( x ) 3 2 + ⋯ = R ( x ) + R ( x ) 2 2 − 2 R ( x ) R(x)=xe^{S(x)},S(x)=R(x)+\frac{R(x)^2}{2}+\frac{R(x)^3}{2}+\dots=R(x)+\frac{R(x)^2}{2-2R(x)} R(x)=xeS(x),S(x)=R(x)+2R(x)2+2R(x)3+⋯=R(x)+2−2R(x)R(x)2- 因此有
R ( x ) = x e R ( x ) + R ( x ) 2 2 − 2 R ( x ) R(x)=xe^{R(x)+\frac{R(x)^2}{2-2R(x)}} R(x)=xeR(x)+2−2R(x)R(x)2
x e R ( x ) + R ( x ) 2 2 − 2 R ( x ) − R ( x ) = 0 xe^{R(x)+\frac{R(x)^2}{2-2R(x)}}-R(x)=0 xeR(x)+2−2R(x)R(x)2−R(x)=0- 令 G ( R ( x ) ) = x e R ( x ) + R ( x ) 2 2 − 2 R ( x ) − R ( x ) G(R(x))=xe^{R(x)+\frac{R(x)^2}{2-2R(x)}}-R(x) G(R(x))=xeR(x)+2−2R(x)R(x)2−R(x) ,则 G ( R ( x ) ) = 0 G(R(x))=0 G(R(x))=0
- 考虑牛顿迭代解上述方程,令
R ( x ) ≡ R 0 ( x ) ( m o d x n ) R(x)\equiv R_0(x)\quad(mod\ x^n) R(x)≡R0(x)(mod xn)- 则有 G ( R ( x ) ) ≡ G ( R 0 ( x ) ) + ( R ( x ) − R 0 ( x ) ) G ′ ( R 0 ( x ) ) ≡ 0 ( m o d x 2 n ) G(R(x))\equiv G(R_0(x))+(R(x)-R_0(x))G'(R_0(x))\equiv0\quad(mod\ x^{2n}) G(R(x))≡