【题目链接】
【思路要点】
- 直接应用 Lindström–Gessel–Viennot lemma 即可。
- 时间复杂度 O ( N ∗ M ) O(N*M) O(N∗M) 。
【代码】
#include<bits/stdc++.h> using namespace std; const int MAXN = 3005; const int P = 1e9 + 7; typedef long long ll; typedef long double ld; typedef unsigned long long ull; template <typename T> void chkmax(T &x, T y) {x = max(x, y); } template <typename T> void chkmin(T &x, T y) {x = min(x, y); } template <typename T> void read(T &x) { x = 0; int f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = x * 10 + c - '0'; x *= f; } template <typename T> void write(T x) { if (x < 0) x = -x, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } template <typename T> void writeln(T x) { write(x); puts(""); } char s[MAXN][MAXN]; int f[MAXN][MAXN], g[MAXN][MAXN]; int main() { int n, m; read(n), read(m); for (int i = 1; i <= n; i++) scanf("\n%s", s[i] + 1); f[n][m - 1] = s[n][m - 1] == '.'; g[n - 1][m] = s[n - 1][m] == '.'; for (int i = n; i >= 1; i--) for (int j = m; j >= 1; j--) { if (s[i][j] == '#') continue; f[i][j] += f[i + 1][j] + f[i][j + 1]; if (f[i][j] >= P) f[i][j] -= P; g[i][j] += g[i + 1][j] + g[i][j + 1]; if (g[i][j] >= P) g[i][j] -= P; } writeln(((1ll * f[2][1] * g[1][2] - 1ll * f[1][2] * g[2][1]) % P + P) % P); return 0; }