【题目链接】
【思路要点】
- 直接上容斥原理。
- 令\(M=N-K\),\(Ans=\binom{N}{M}*\sum_{i=0}^{M}(-1)^{M-i}*\binom{M}{i}*(2^{2^i}-1)\)
- 时间复杂度\(O(N+MLogN)\)。
【代码】
#include<bits/stdc++.h> using namespace std; const int MAXN = 1000005; const int P = 1e9 + 7; template <typename T> void chkmax(T &x, T y) {x = max(x, y); } template <typename T> void chkmin(T &x, T y) {x = min(x, y); } template <typename T> void read(T &x) { x = 0; int f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = x * 10 + c - '0'; x *= f; } template <typename T> void write(T x) { if (x < 0) x = -x, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } template <typename T> void writeln(T x) { write(x); puts(""); } int n, m, ans; int fac[MAXN], inv[MAXN]; int c(int x, int y) {return 1ll * fac[x] * inv[y] % P * inv[x - y] % P; } int power(int x, int y, int P) { if (y == 0) return 1; int tmp = power(x, y / 2, P); if (y % 2 == 0) return 1ll * tmp * tmp % P; else return 1ll * tmp * tmp % P * x % P; } int calc(int x) { return power(2, power(2, x, P - 1), P) - 1; } int main() { read(n), read(m); m = n - m; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % P; inv[n] = power(fac[n], P - 2, P); for (int i = n - 1; i >= 0; i--) inv[i] = inv[i + 1] * (i + 1ll) % P; for (int i = m; i >= 0; i--) if ((m - i) % 2 == 0) ans = (ans + 1ll * c(m, i) * calc(i)) % P; else ans = (ans - 1ll * c(m, i) * calc(i) % P + P) % P; writeln(1ll * ans * c(n, m) % P); return 0; }