seaborn 画图工具的基本使用

1. Seaborn 的基本使用

  • 类别散点图:seaborn.stripplot()
  • 类别内的数据分布:
    箱线图:seaborn.boxplot()
    小提琴图:seaborn.violinplot()
  • 类别内的统计估计
    条形图:barplot()
    点图:pointplot()

1.1 Seaborn----绘制统计图形

Seaborn基于 Matplotlib核心库进行了更高级的API封装,可以轻松地画出更漂亮的图形,而Seaborn的漂亮主要体现在配色更加舒服,以及图 形元素的样式更加细腻。
首先需要安装seaborn
# 安装 pip3 install seaborn
# 导入 import seaborn as sns

1.1.1 绘制单变量分布

可以采用最简单的直方图描述单变量的分布情况。 Seaborn中提供了 distplot()函数,它默认绘制的是一个带有核密度估计曲线的直方图。 distplot()函数的语法格式如下。

seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, color=None)

上述函数中常用参数的含义如下:
(1) a:表示要观察的数据,可以是 Series、一维数组或列表。
(2) bins:用于控制条形的数量。
(3) hist:接收布尔类型,表示是否绘制(标注)直方图。
(4) kde:接收布尔类型,表示是否绘制高斯核密度估计曲线。
(5) rug:接收布尔类型,表示是否在支持的轴方向上绘制rugplot。
在这里插入图片描述

1.1.2. 绘制双变量分布

两个变量的二元分布可视化也很有用。在 Seaborn中最简单的方法是使用 jointplot()函数,该函数可以创建一个多面板图形,比如散点图、二 维直方图、核密度估计等,以显示两个变量之间的双变量关系及每个变量在单坐标轴上的单变量分布。
jointplot()函数的语法格式如下。

seaborn.jointplot(x, y, data=N
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值