Python 之 K-means 算法

本文深入解析了K-means聚类算法的原理及应用,通过实例代码演示了算法的实现过程,包括数据预处理、初始化质心、迭代更新等关键步骤,并展示了聚类结果的可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:背景引入

       机器学习领域需要对数据进行操作,其中有两个常见的操作:聚类和分类。聚类属于物以类聚,寻求数据内部的联系,原始的数据是没有任何标记的,仅仅是一堆数据,名曰无监督学习,就是无标签,比如k-means 算法;而分类属于近朱者赤,数据是有标记的,名曰有监督学习,比如KNN算法。正常的步骤是先聚类再分类。

二:k-means 原理

      给定样本数据集 D=(x_1, x_2, x_3, ...x_m), "k均值"(k-means)算法对聚类所得的类划分C=(C_1, C_2, C_3, ..., C_k), 目标是最小化平方误差函数:

                                                                     E=\sum _{i=1}^k\sum _{x \in C_i}||x-\mu_i||_2^2

  其中\mu_i=1/|C_i|\sum _{x \in C_i}x,是每一类的平均值。通俗的讲,误差函数刻画了每一类的紧密程度。E越小,则对每一类而言,该类中的成员离均值越紧密,紧密团结在以均值为核心的类周围。所以,想要最小化误差,有两个办法,一是K的选取,二是均值的选取。找到所有可能的K就能找到最优解,但这是NP难(非多项式时间复杂度)问题,转而从均值着手,采用贪心算法,即通过迭代求解:先初始化均值,然后迭代更新均值,当均值变化不大,如均值改变量小于某个给定阈值\epsilon时,我们就可以认为每一类已经趋于稳定,从而可认为算法收敛。

三:代码解析

该代码以均值改变量小于给定阈值为收敛标准。代码源自 https://blog.youkuaiyun.com/zouxy09/article/details/17589329

这里稍加改动,运行环境为Python 3.6, 把不太熟悉的地方稍加解释

1. K_means.py

from numpy import *
import time
import matplotlib.pyplot as plt
 
 
# calculate Euclidean distance
def euclDistance(vector1, vector2):
	return sqrt(sum(power(vector2 - vector1, 2)))
 
# init centroids with random samples
def initCentroids(dataSet, k):
	numSamples, dim = dataSet.shape
	centroids = zeros((k, dim))
	for i in range(k):
		index = int(random.uniform(0, numSamples))
		centroids[i, :] = dataSet[index, :]
	return centroids
 
# k-means cluster
def kmeans(dataSet, k):
	numSamples = dataSet.shape[0]
	# first column stores which cluster this sample belongs to,
	# second column stores the error between this sample and its centroid
	clusterAssment = mat(zeros((numSamples, 2)))
	clusterChanged = True
 
	## step 1: init centroids
	centroids = initCentroids(dataSet, k)
 
	while clusterChanged:
		clusterChanged = False
		## for each sample
		for i in range(numSamples):
			minDist  = 100000.0
			minIndex = 0
			## for each centroid
			## step 2: find the centroid who is closest
			for j in range(k):
				distance = euclDistance(centroids[j, :], dataSet[i, :])
				if distance < minDist:
					minDist  = distance
					minIndex = j
			
			## step 3: update its cluster
			if clusterAssment[i, 0] != minIndex:
				clusterChanged = True
				clusterAssment[i, :] = minIndex, minDist**2
 
		## step 4: update centroids
		for j in range(k):
			pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
			centroids[j, :] = mean(pointsInCluster, axis = 0)
 
	print ('Congratulations, cluster complete!')
	return centroids, clusterAssment
 
# show your cluster only available with 2-D data
def showCluster(dataSet, k, centroids, clusterAssment):
	numSamples, dim = dataSet.shape
	if dim != 2:
		print ("Sorry! I can not draw because the dimension of your data is not 2!")
		return 1
 
	mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
	if k > len(mark):
		print ("Sorry! Your k is too large! please contact Zouxy")
		return 1
 
	# draw all samples
	for i in range(numSamples):
		markIndex = int(clusterAssment[i, 0])
		plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
 
	mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
	# draw the centroids
	for i in range(k):
		plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
 
	plt.show()

把这句代码解释下:

pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]

clusterAssment[:, 0].A表示将矩阵clusterAssment的第一列转为数组array,nonzero表示取出array中的非0值,nonzero是numpy中的方法。看个例子:

>>>import numpy as np

>>> a=np.mat([[1,2],[2,3],[4,3]])
>>> a
matrix([[1, 2],
        [2, 3],
        [4, 3]])

>>> a[:,0]    #切片操作,取出第一列
matrix([[1],
        [2],
        [4]])

>>> a.A       #可以看到类型变成了array
array([[1, 2],
       [2, 3],
       [4, 3]])

>>> np.nonzero(a[:,0].A!=0)#结果其实分别表示行,列,即(0,0),(1,0),(2,0)元素不为0
(array([0, 1, 2], dtype=int32), array([0, 0, 0], dtype=int32))

>>> np.nonzero(a[:,0].A!=0)[0]#将行标取出,即0,1,2行
array([0, 1, 2], dtype=int32)

>>> b=np.mat([[2,3],[1,3],[3,4]])
>>> b[np.nonzero(a[:,0].A!=0)[0]]#即取出b的0,1,2行
matrix([[2, 3],
        [1, 3],
        [3, 4]])

所以这句代码实现了属于同一类的数据的聚合,把dataSet中同一类的数据全部放在pointsincluster这个矩阵中。方便下面求均值。

2. 测试代码

这里设置K=4,即分四类。

K_means_test.py

from numpy import *
from K_means import kmeans, showCluster
import time
import matplotlib.pyplot as plt
 
## step 1: load data
print ("step 1: load data...")
dataSet = []
fileIn = open('/media/disk_add/myzhao/PycharmProjects/K_means/test.txt')
for line in fileIn.readlines():
	lineArr = line.strip().split('\t')
	dataSet.append([float(lineArr[0]), float(lineArr[1])])
 
## step 2: clustering...
print ("step 2: clustering...")
dataSet = mat(dataSet)
k = 4
centroids, clusterAssment = kmeans(dataSet, k)
 
## step 3: show the result
print ("step 3: show the result...")
showCluster(dataSet, k, centroids, clusterAssment)

数据:

1.658985	4.285136
-3.453687	3.424321
4.838138	-1.151539
-5.379713	-3.362104
0.972564	2.924086
-3.567919	1.531611
0.450614	-3.302219
-3.487105	-1.724432
2.668759	1.594842
-3.156485	3.191137
3.165506	-3.999838
-2.786837	-3.099354
4.208187	2.984927
-2.123337	2.943366
0.704199	-0.479481
-0.392370	-3.963704
2.831667	1.574018
-0.790153	3.343144
2.943496	-3.357075
-3.195883	-2.283926
2.336445	2.875106
-1.786345	2.554248
2.190101	-1.906020
-3.403367	-2.778288
1.778124	3.880832
-1.688346	2.230267
2.592976	-2.054368
-4.007257	-3.207066
2.257734	3.387564
-2.679011	0.785119
0.939512	-4.023563
-3.674424	-2.261084
2.046259	2.735279
-3.189470	1.780269
4.372646	-0.822248
-2.579316	-3.497576
1.889034	5.190400
-0.798747	2.185588
2.836520	-2.658556
-3.837877	-3.253815
2.096701	3.886007
-2.709034	2.923887
3.367037	-3.184789
-2.121479	-4.232586
2.329546	3.179764
-3.284816	3.273099
3.091414	-3.815232
-3.762093	-2.432191
3.542056	2.778832
-1.736822	4.241041
2.127073	-2.983680
-4.323818	-3.938116
3.792121	5.135768
-4.786473	3.358547
2.624081	-3.260715
-4.009299	-2.978115
2.493525	1.963710
-2.513661	2.642162
1.864375	-3.176309
-3.171184	-3.572452
2.894220	2.489128
-2.562539	2.884438
3.491078	-3.947487
-2.565729	-2.012114
3.332948	3.983102
-1.616805	3.573188
2.280615	-2.559444
-2.651229	-3.103198
2.321395	3.154987
-1.685703	2.939697
3.031012	-3.620252
-4.599622	-2.185829
4.196223	1.126677
-2.133863	3.093686
4.668892	-2.562705
-2.793241	-2.149706
2.884105	3.043438
-2.967647	2.848696
4.479332	-1.764772
-4.905566	-2.911070

3. 运行结果

                                             

 

可以看到分成了4类。菱形代表该类的最终均值。

文章主要参考:https://blog.youkuaiyun.com/zouxy09/article/details/17589329

写的比较具体,大家可以看原文。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值