转自:http://longer.spaces.eepw.com.cn/articles/article/item/71979
要区分功率谱和能量谱,首先要清楚两种不同类型的信号:功率信号和能量信号。我们从一个具体的物理系统来引出能量信号和功率信号的概念。已知阻值为R的电阻上的电压和电流分别为v(t) 和 i(t),则此电信号的瞬时功率为: p(t) = v2(t)/R = i2(t)R。在作定性分析时,为了方便起见,通常假设电阻R为1欧姆而得到归一化 (Normolized) 的功率值。作定量计算时可以通过去归一化,即将实际的电阻值代入即可得到实际的功率值。将上面的概念做一个抽象,对信号 x(t) 定义其瞬时功率为 |f (t)|2,在时间间隔 (-T/2 T/2) 内的能量为:
E=int(|f (t)|2 ,-T/2,T/2) (1)
上式表示对|f (t)|2积分,积分限为(-T/2 T/2)。
该间隔内的平均功率为:
p = E/T (2)
当且仅当f(t)在所有时间上的能量不为0且有限时,该信号为能量信号,即(1)式中的 T 趋于无穷大的时候E为有限。典型的能量信号如方波信号、三角波信号等。但是有些信号不满足能量信号的条件,如周期信号和能量无限的随机信号,此时就需要用功率来描述这类信号。当且仅当x(t)在所有时间上的功率不为0且有限时,该信号为功率信号,即 (2) 式中的 T 趋于无穷大的时候 p 为有限。系统中的波形要么具有能量值,要么具有功率值,因为能量有限的信号功率为0,而功率有限的信号能量为无穷大。一般来说,周期信号和随机信号是功率信号,而非周期的确定信号是能量信号。将信号区分为能量信号和功率信号可以简化对各种信号和噪声的数学分析。还有一类信号其功率和能量都是无限的,如 f(t) = t,这类信号很少会用到。
了解了功率信号和能量信号后,功率谱和能量谱就比较好理解了,描述功率信号便使用功率谱,能量信号使用能量谱。所谓的能量谱,也称为能量谱密度,是指用密度的概念表示信号能量在各频率点的分布情况。也即是说,对能量谱在频域上积分就可以得到信号的能量。能量谱是信号幅度谱的模的平方,其量纲是焦/赫。对于功率信号,常用功率谱来描述。所谓的功率谱,也称为功率谱密度,是指用密度的概念表示信号功率在各频率点的分布情况。也就是说,对功率谱在频域上积分就可以得到信号的功率。从理论上来说,功率谱是信号自相关函数的傅里叶变换。因为功率信号不满足傅里叶变换的条件,其频谱通常不存在,维纳-辛钦定理证明了自相关函数和傅里叶变换之间对应关系。在工程实际中,即便是功率信号,由于持续的时间有限,可以直接对信号进行傅里叶变换,然后对得到的幅度谱的模求平方,再除以持续时间来估计信号的功率谱。