sklearn交叉验证(acc)

本文通过使用sklearn库中的ExtraTreesClassifier进行交叉验证,并针对不同数量的基学习器(n_estimators)评估其对准确率的影响。实验中展示了如何通过改变这一超参数来选择最佳模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn.preprocessing as preprocessing
from sklearn import preprocessing
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures

dataset_x,dataset_y=return_data.return_traindata()

X_train, X_test, y_train, y_test = train_test_split(dataset_X, dataset_Y,
                                                  test_size=0.2,
                                                  random_state=42)

alphas=[10,15,20,25,30]
test_sores=[]
for alpha in alphas:
    clf = ExtraTreesClassifier(n_estimators=alpha, max_depth=None,
        min_samples_split=3, random_state=1)
    sore=cross_val_score(clf,X_train,
                                        y_train.ravel(),cv=5,
                                        scoring='accuracy')       #交叉验证
    test_sores.append(np.mean(sore))
    print("testing",str(alpha))
print(test_sores)
plt.figure()
plt.plot(alphas,test_sores, color='blue')
plt.scatter(alphas,test_sores,s=75,c="red",alpha=0.5)
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值