堆排序

本文深入解析堆排序算法,包括构建初始堆、交换堆顶元素和末尾元素并重建堆的过程。详细介绍了堆排序的时间复杂度为O(nlogn),并通过Java代码实现堆排序,包括构建大顶堆、调整堆结构和交换元素等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:图解算法之堆排序
堆排序是一种选择排序,整体主要由“构建初始堆、交换堆顶元素和末尾元素并重建堆”两部分组成。其中构建初始堆经推导复杂度为O(n),在交换并重建堆的过程中,需交换n-1次,而重建堆的过程中,根据完全二叉树的性质,[log2(n-1),log2(n-2)…1]逐步递减,近似为nlogn。所以堆排序时间复杂度一般认为就是O(nlogn)级。

package sortdemo;

import java.util.Arrays;

/**
 * Created on 2016/12/17.
 * 堆排序demo
 */
public class HeapSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void sort(int []arr){
        //1.构建大顶堆
        for(int i=arr.length/2-1;i>=0;i--){
            //从第一个非叶子结点从下至上,从右至左调整结构
            adjustHeap(arr,i,arr.length);
        }
        //2.调整堆结构+交换堆顶元素与末尾元素
        for(int j=arr.length-1;j>0;j--){
            swap(arr,0,j);//将堆顶元素与末尾元素进行交换
            adjustHeap(arr,0,j);//重新对堆进行调整
        }

    }

    /**
     * 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
     * @param arr
     * @param i
     * @param length
     */
    public static void adjustHeap(int []arr,int i,int length){
        int temp = arr[i];//先取出当前元素i
        for(int k=i*2+1;k<length;k=k*2+1){//从i结点的左子结点开始,也就是2i+1处开始
            if(k+1<length && arr[k]<arr[k+1]){//如果左子结点小于右子结点,k指向右子结点
                k++;
            }
            if(arr[k] >temp){//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
                arr[i] = arr[k];
                i = k;
            }else{
                break;
            }
        }
        arr[i] = temp;//将temp值放到最终的位置
    }

    /**
     * 交换元素
     * @param arr
     * @param a
     * @param b
     */
    public static void swap(int []arr,int a ,int b){
        int temp=arr[a];
        arr[a] = arr[b];
        arr[b] = temp;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值