python数据处理学习笔记

本文详细介绍了sklearn.preprocessing.Imputer模块的功能与使用方法,包括填补缺失值的主要参数、替换策略及适用场景,如均值、中位数和众数替换等,并解释了copy参数的作用及statistics_属性的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载自:https://blog.youkuaiyun.com/kancy110/article/details/75041923

sklearn.preprocessing.Imputer

填补缺失值:sklearn.preprocessing.Imputer(missing_values=’NaN’, strategy=’mean’, axis=0, verbose=0, copy=True)

主要参数说明:

missing_values:缺失值,可以为整数或NaN(缺失值numpy.nan用字符串‘NaN’表示),默认为NaN

strategy:替换策略,字符串,默认用均值‘mean’替换

①若为mean时,用特征列的均值替换(除去空之后的平均值)

②若为median时,用特征列的中位数替换(除去空之后的中值)

③若为most_frequent时,用特征列的众数替换(除去空之后的中值)

axis:指定轴数,默认axis=0代表列,axis=1代表行

copy:设置为True代表不在原数据集上修改,设置为False时,就地修改,存在如下情况时,即使设置为False时,也不会就地修改

①X不是浮点值数组

②X是稀疏且missing_values=0

③axis=0且X为CRS矩阵

④axis=1且X为CSC矩阵

statistics_属性:axis设置为0时,每个特征的填充值数组,axis=1时,报没有该属性错误

[:,0:1]和[:,1]的区别

[:,0:1]取值后保持列的特性,仍为行数*一列的数组
[:,1]取值后为只有一行的array

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值