1.为什么要有线程池?
线程使应用能够更加充分合理地协调利用CPU、内存、网络、I/O等系统资源.
线程的创建需要开辟虚拟机栈、本地方法栈、程序计数器等线程私有的内存空间;
在线程销毁时需要回收这些系统资源.
频繁地创建和销毁线程会浪费大量的系统资源,增加并发编程风险.
在服务器负载过大的时候,如何让新的线程等待或者友好地拒绝服务?
这些都是线程自身无法解决的;
所以需要通过线程池协调多个线程,并实现类似主次线程隔离、定时执行、周期执行等任务.
线程池的作用包括:
●利用线程池管理并复用线程、控制最大并发数等
●实现任务线程队列缓存策略和拒绝机制
●实现某些与时间相关的功能
如定时执行、周期执行等
●隔离线程环境
比如,交易服务和搜索服务在同一台服务器上,分别开启两个线程池,交易线程的资源消耗明显要大;
因此,通过配置独立的线程池,将较慢的交易服务与搜索服务隔离开,避免各服务线程相互影响.
在开发中,合理地使用线程池能够带来3个好处
降低资源消耗 通过重复利用已创建的线程,降低创建和销毁线程造成的系统资源消耗
提高响应速度 当任务到达时,任务可以不需要等到线程创建就能立即执行
提高线程的可管理性 线程是稀缺资源,如果过多地创建,不仅会消耗系统资源,还会降低系统的稳定性,导致使用线程池可以进行统一分配、调优和监控。
2.线程池的类的继承关系?
ThreadPoolExecutor extends AbstractExecutorService
abstract class AbstractExecutorService implements ExecutorService
public interface ExecutorService extends Executor
3.构造函数
(1)
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}//用给定的初始参数和默认的线程工厂及被拒绝的执行处理程序创建新的 ThreadPoolExecutor。使用 Executors 工厂方法之一比使用此通用构造方法方便得多。
参数:
corePoolSize - 池中所保存的线程数,包括空闲线程。
maximumPoolSize - 池中允许的最大线程数。
keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
unit - keepAliveTime 参数的时间单位。
workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute 方法提交的 Runnable 任务。
抛出:
IllegalArgumentException - 如果 corePoolSize 或 keepAliveTime 小于 0,或者 maximumPoolSize 小于等于 0,或者 corePoolSize 大于 maximumPoolSize。
NullPointerException - 如果 workQueue 为 null
2)
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
threadFactory, defaultHandler);
}//用给定的初始参数和默认被拒绝的执行处理程序创建新的 ThreadPoolExecutor。
参数:
corePoolSize - 池中所保存的线程数,包括空闲线程。
maximumPoolSize - 池中允许的最大线程数。
keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
unit - keepAliveTime 参数的时间单位。
workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute 方法提交的 Runnable 任务。
threadFactory - 执行程序创建新线程时使用的工厂。
抛出:
IllegalArgumentException - 如果 corePoolSize 或 keepAliveTime 小于 0,或者 maximumPoolSize 小于等于 0,或者 corePoolSize 大于 maximumPoolSize。
NullPointerException - 如果 workQueue 或 threadFactory 为 null。
(3)
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), handler);
}//用给定的初始参数和默认的线程工厂创建新的 ThreadPoolExecutor。
参数:
corePoolSize - 池中所保存的线程数,包括空闲线程。
maximumPoolSize - 池中允许的最大线程数。
keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
unit - keepAliveTime 参数的时间单位。
workQueue - 执行前用于保持任务的队列。此队列仅由保持 execute 方法提交的 Runnable 任务。
handler - 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。
抛出:
IllegalArgumentException - 如果 corePoolSize 或 keepAliveTime 小于 0,或者 maximumPoolSize 小于等于 0,或者 corePoolSize 大于 maximumPoolSize。
NullPointerException - 如果 workQueue 或 handler 为 null。
(4)
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}//用给定的初始参数创建新的 ThreadPoolExecutor。
参数:
corePoolSize - 池中所保存的线程数,包括空闲线程。
maximumPoolSize - 池中允许的最大线程数。
keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
unit - keepAliveTime 参数的时间单位。
workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute 方法提交的 Runnable 任务。
threadFactory - 执行程序创建新线程时使用的工厂。
handler - 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。
抛出:
IllegalArgumentException - 如果 corePoolSize 或 keepAliveTime 小于 0,或者 maximumPoolSize 小于等于 0,或者 corePoolSize 大于 maximumPoolSize。
NullPointerException - 如果 workQueue、 threadFactory 或 handler 为 null。
4.线程池的工作原理?
1、线程池刚创建时,里面没有一个线程。任务队列是作为参数传进来的。不过,就算队列里面有任务,线程池也不会马上执行它们。
2.当调用 execute() 方法添加一个任务时,线程池会做如下判断:
如果正在运行的线程数量小于 corePoolSize,那么马上创建线程运行这个任务;
如果正在运行的线程数量大于或等于 corePoolSize,那么将这个任务放入队列。
如果这时候队列满了,而且正在运行的线程数量小于 maximumPoolSize,那么还是要创建线程运行这个任务;
如果队列满了,而且正在运行的线程数量大于或等于 maximumPoolSize,那么线程池会抛出异常,告诉调用者“我不能再接受任务了”。
3.当一个线程完成任务时,它会从队列中取下一个任务来执行。
4.当一个线程无事可做,超过一定的时间(keepAliveTime)时,线程池会判断,如果当前运行的线程数大于 corePoolSize,那么这个线程就被停掉。所以线程池的所有任务完成后,它最终会收缩到 corePoolSize 的大小。
5。ThreadPoolExecutor存在哪些接口,提供了哪些方法,用处?
接口: ExecutorService
public interface ExecutorService
extends
Executor
Executor 提供了管理终止的方法,以及可为跟踪一个或多个异步任务执行状况而生成 Future 的方法。
可以关闭 ExecutorService,这将导致其拒绝新任务。提供两个方法来关闭 ExecutorService。shutdown() 方法在终止前允许执行以前提交的任务,而 shutdownNow() 方法阻止等待任务启动并试图停止当前正在执行的任务。在终止时,执行程序没有任务在执行,也没有任务在等待执行,并且无法提交新任务。应该关闭未使用的 ExecutorService 以允许回收其资源。
方法:
shutdown
void shutdown()
启动一次顺序关闭,执行以前提交的任务,但不接受新任务。如果已经关闭,则调用没有其他作用。
shutdownNow
List<Runnable> shutdownNow()
试图停止所有正在执行的活动任务,暂停处理正在等待的任务,并返回等待执行的任务列表。
无法保证能够停止正在处理的活动执行任务,但是会尽力尝试。例如,通过 Thread.interrupt() 来取消典型的实现,所以任何任务无法响应中断都可能永远无法终止。
返回:
从未开始执行的任务的列表
invokeAll
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
throws InterruptedException
执行给定的任务,当所有任务完成时,返回保持任务状态和结果的 Future 列表。返回列表的所有元素的 Future.isDone() 为 true。注意,可以正常地或通过抛出异常来终止 已完成 任务。如果正在进行此操作时修改了给定的 collection,则此方法的结果是不确定的。
参数:
tasks - 任务 collection
返回:
表示任务的 Future 列表,列表顺序与给定任务列表的迭代器所生成的顺序相同,每个任务都已完成。
invokeAll
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
long timeout,
TimeUnit unit)
throws InterruptedException
执行给定的任务,当所有任务完成或超时期满时(无论哪个首先发生),返回保持任务状态和结果的 Future 列表。返回列表的所有元素的 Future.isDone() 为 true。一旦返回后,即取消尚未完成的任务。注意,可以正常地或通过抛出异常来终止 已完成 任务。如果此操作正在进行时修改了给定的 collection,则此方法的结果是不确定的。
参数:
tasks - 任务 collection
timeout - 最长等待时间
unit - timeout 参数的时间单位
返回:
表示任务的 Future 列表,列表顺序与给定任务列表的迭代器所生成的顺序相同。如果操作未超时,则已完成所有任务。如果确实超时了,则某些任务尚未完成。
接口:Executor
public interface Executor
执行已提交的 Runnable 任务的对象。此接口提供一种将任务提交与每个任务将如何运行的机制(包括线程使用的细节、调度等)分离开来的方法。通常使用 Executor 而不是显式地创建线程。
特有的方法:
execute
void execute(Runnable command)
在未来某个时间执行给定的命令。该命令可能在新的线程、已入池的线程或者正调用的线程中执行,这由 Executor 实现决定。
参数:
command - 可运行的任务
抛出:
RejectedExecutionException - 如果不能接受执行此任务。
NullPointerException - 如果命令为 null
corePoolSize
线程池中的核心线程数,当提交一个任务时,线程池创建一个新线程执行任务,直到当前线程数等于corePoolSize, 即使有其他空闲线程能够执行新来的任务, 也会继续创建线程;如果当前线程数为corePoolSize,继续提交的任务被保存到阻塞队列中,等待被执行;如果执行了线程池的prestartAllCoreThreads()方法,线程池会提前创建并启动所有核心线程。
workQueue
用来保存等待被执行的任务的阻塞队列. 在JDK中提供了如下阻塞队列:
(1) ArrayBlockingQueue:基于数组结构的有界阻塞队列,按FIFO排序任务;
(2) LinkedBlockingQuene:基于链表结构的阻塞队列,按FIFO排序任务,吞吐量通常要高于ArrayBlockingQuene;
(3) SynchronousQuene:一个不存储元素的阻塞队列,每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQuene;
(4) priorityBlockingQuene:具有优先级的无界阻塞队列;
maximumPoolSize
线程池中允许的最大线程数。如果当前阻塞队列满了,且继续提交任务,则创建新的线程执行任务,前提是当前线程数小于maximumPoolSize;当阻塞队列是无界队列, 则maximumPoolSize则不起作用, 因为无法提交至核心线程池的线程会一直持续地放入workQueue.
keepAliveTime
线程空闲时的存活时间,即当线程没有任务执行时,该线程继续存活的时间;默认情况下,该参数只在线程数大于corePoolSize时才有用, 超过这个时间的空闲线程将被终止;
unit
keepAliveTime的单位
threadFactory
创建线程的工厂,通过自定义的线程工厂可以给每个新建的线程设置一个具有识别度的线程名。默认为DefaultThreadFactory
handler
handler
线程池的饱和策略,当阻塞队列满了,且没有空闲的工作线程,如果继续提交任务,必须采取一种策略处理该任务,线程池提供了4种策略:
AbortPolicy:直接抛出异常,默认策略;
CallerRunsPolicy:用调用者所在的线程来执行任务;
DiscardOldestPolicy:丢弃阻塞队列中靠最前的任务,并执行当前任务;
DiscardPolicy:直接丢弃任务;
当然也可以根据应用场景实现RejectedExecutionHandler接口,自定义饱和策略,如记录日志或持久化存储不能处理的任务。
6、Executors静态工厂几种常用线程池
(1)newFixedThreadPool
/*创建一个固定长度的的线程池,用于保存任务的阻塞队列为无限制长度的LinkedBlockingQueue。
线程池中的线程将会一直存在除非线程池shutdown,即线程池中的线程没有受到存活时间的限制。*/
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
线程池的线程数量达corePoolSize后,即使线程池没有可执行任务时,也不会释放线程。
FixedThreadPool的工作队列为无界队列LinkedBlockingQueue(队列容量为Integer.MAX_VALUE), 这会导致以下问题:
- 线程池里的线程数量不超过corePoolSize,这导致了maximumPoolSize和keepAliveTime将会是个无用参数
- 由于使用了无界队列, 所以FixedThreadPool永远不会拒绝, 即饱和策略失效
(2)newSingleThreadExecutor
//创建一个单工作线程且无边界的队列的线程池。如果执行期间此线程挂掉了,则如果需要就会产生一个新线程来顺序执行任务。
//任何时候都不会有超过一个线程是存活的
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
初始化的线程池中只有一个线程,如果该线程异常结束,会重新创建一个新的线程继续执行任务,唯一的线程可以保证所提交任务的顺序执行.
由于使用了无界队列, 所以SingleThreadPool永远不会拒绝, 即饱和策略失效。
(3)newCachedThreadPool
/*
创建一个线程池,这个线程池的corePoolSize的大小为零,maxPoolSize为Integer.MAX_VALUE.
即对于线程池,只要需要就可以创建新的线程。不过如果有空闲线程存在则就会重用此线程。
此线程池的线程都有一定的存活时间。即如果线程已经有60s没有被使用则就会被移除线程池。
*/
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
//与上面的功能一样,只是指定了线程工厂。
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
threadFactory);
}
(4)newScheduledThreadPool
创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
//创建一个线程池,该线程池提供延时执行任务或者是周期性执行任务的功能。
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
public static ScheduledExecutorService newScheduledThreadPool(
int corePoolSize, ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
ScheduledThreadPoolExecutor 类中的构造函数如下:
/*
根据指定的corePoolSize的大小来创建线程池,maxPoolSize的大小为Integer.MAX_VALUE,线程没有存活时间的限制
*/
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
new DelayedWorkQueue());
}
(5)newSingleThreadScheduledExecutor:
创建一个单线程的线程池。此线程池支持定时以及周期性执行任务的需求。
//创建一个单线程的线程池,提供任务延时执行或周期性执行的功能。
//如果该线程在线程池运行期间挂掉,则如果需要则会产生一个新的线程来顺序执行任务。
public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1));
}
public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1, threadFactory));
}
ScheduledThreadPoolExecutor 类中的构造函数如下:
/*
根据指定的corePoolSize的大小来创建线程池,maxPoolSize的大小为Integer.MAX_VALUE.
*/
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
new DelayedWorkQueue());
}
7.内部状态:
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
其中AtomicInteger变量ctl的功能非常强大:利用低29位表示线程池中线程数,通过高3位表示线程池的运行状态:
1、RUNNING:-1 << COUNT_BITS,即高3位为111,该状态的线程池会接收新任务,并处理阻塞队列中的任务;
2、SHUTDOWN: 0 << COUNT_BITS,即高3位为000,该状态的线程池不会接收新任务,但会处理阻塞队列中的任务;
3、STOP : 1 << COUNT_BITS,即高3位为001,该状态的线程不会接收新任务,也不会处理阻塞队列中的任务,而且会中断正在运行的任务;
4、TIDYING : 2 << COUNT_BITS,即高3位为010, 所有的任务都已经终止;
5、TERMINATED: 3 << COUNT_BITS,即高3位为011, terminated()方法已经执行完成