img1_channel1=img1.numpy()[0,:,:,:][0,:,:][:,:,None]#array(512, 512, 1)
#img1.numpy()[0,:,:,:] (3,512,512)
#img1.numpy()[0,:,:,:][0,:,:] (512,512)
#img1.numpy()[0,:,:,:][0,:,:][:,:,None] (512,512,1)
img1_channel2=img1.numpy()[0,:,:,:][1,:,:][:,:,None]#array(512, 512, 1)
img1_channel3=img1.numpy()[0,:,:,:][2,:,:][:,:,None]#array(512, 512, 1)
#print("img1_channel1.type:",type(img1_channel1)) #<class 'numpy.ndarray'>
#print("img1_channel1.shape:",img1_channel1.shape) # (512, 512, 1)
img1=np.concatenate((img1_channel1,img1_channel2,img1_channel3),axis=-1)
#img1 numpy.ndarray(512, 512, 3)
torch.Size([1, 3, 512, 512])转为<class ‘numpy.ndarray‘>(512, 512, 3)
最新推荐文章于 2024-03-26 19:00:22 发布