Python中Pandas的相关使用介绍(一)

本文介绍了Python数据分析库Pandas的基本使用方法,包括安装步骤、Series和DataFrame的创建、date_range函数的使用,以及DataFrame的数据类型查看、索引排序和数值排序等操作。

2018-08-08我的第一篇博客

Python中Pandas的相关使用介绍(一)
该博客介绍以下几个知识点
(1)Pandas的安装
(2)Pandas的Series
(3)Pandas的date_range
(4)Pandas的DataFrame

(1)Pandas的安装
Windows直接输入“pip3 install pandas”即可 #备注:pip3代表Python3

(2)Pandas的Series

import pandas as pd
import numpy as np
#pandas的series,可以加入其它类型数据
s = pd.Series([1,3,6,np.nan,44,1]) 

(3)Pandas的date_range

dates = pd.date_range('20160101',periods = 6)

运行结果:
DatetimeIndex([‘2016-01-01’, ‘2016-01-02’, ‘2016-01-03’, ‘2016-01-04’,
‘2016-01-05’, ‘2016-01-06’],
dtype=’datetime64[ns]’, freq=’D’)

(4)Pandas的DataFrame

df1 = pd.DataFrame(np.random.randn(6,4),index = dates,columns = ['a','b','c','d'])
print(df1)

运行结果:
a b c d
2016-01-01 -0.805625 -0.232777 -1.126270 -1.177906
2016-01-02 -0.222340 1.093580 -0.964848 -1.590257
2016-01-03 2.160641 1.265012 0.390809 -1.012331
2016-01-04 0.038220 1.042917 0.749805 -0.713541
2016-01-05 0.505971 1.514325 -0.752748 0.383580
2016-01-06 1.491880 -0.006414 -1.627780 -0.467440

DataFrame中的一些函数

print(df1.dtypes) #显示数据类型

print(df1.sort_index(axis = 1,ascending = False)) #索引排序

print(df1.sort_values(by = 1)) #数值排序

附加本节学习原始代码

import pandas as pd
import numpy as np

#pandas的series,可以加入其它类型数据
##s = pd.Series([1,3,6,np.nan,44,1]) 


##print(s,"\n"*5,a)

dates = pd.date_range('20160101',periods = 6)
##
##print(dates)


df = pd.DataFrame(np.random.randn(6,4),index = dates,columns = ['a','b','c','d'])
print(df)

##df1 = pd.DataFrame(np.arange(12).reshape(3,4))
###print(df1) #默认
##
##print(df1.dtypes)
##print(df1.sort_index(axis = 1,ascending = False))
##
##print(df1)
##print(df1.sort_values(by = 1))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值