required field is not provided,dataType = “Integer“

required field is not provided

dataType = "int" 要使用该值,如使用:dataType = "Integer",会报:required field is not provided
@ApiImplicitParams({
        @ApiImplicitParam(name = "kw", value = "关键字", required = true, dataType = "String", paramType = "query"),
        @ApiImplicitParam(name = "mCode", value = "mCode", required = true, dataType = "String", paramType = "query"),
        @ApiImplicitParam(name = "userCode", value = "工号", required = true, dataType = "String", paramType = "query"),
        @ApiImplicitParam(name = "pageIndex", value = "页码", required = true, dataType = "int", paramType = "query"),
        @ApiImplicitParam(name = "pageSize", value = "每页大小", required = true, dataType = "int", paramType = "query")
})
@GetMapping("search")
public Xxx search(@RequestParam String kw,
                    @RequestParam String mCode,
                    @RequestParam String userCode,
                    @RequestParam Integer pageIndex,
                    @RequestParam Integer pageSize) {
      记录一下,应该是不支持啥的,详细不了解
      原因可以看看这个 https://github.com/swagger-api/swagger-ui/issues/5979

推荐一下,该博主对dataType也写得挺详细的 https://blog.youkuaiyun.com/qq_39393671/article/details/103307690

3.5 Edit the Script 1. Launch a text or code editor to create a new JavaScript file. 2. Review the script one function at a time. There are four functions that must be implemented in the script to support solicited ethernet communications. • onProfileLoad: Retrieves driver metadata • onValidateTag: Verifies the address and data type created in the configuration or any dynamic tags created in an OPC client are valid for the end device connected • onTagsRequest: Builds a packet of bytes to transmit to the device across the wire. • onData: Interprets the response from the device and updates tag values or indicates if the read or write operation was successful based on the data in the response. Note: onTagsRequest and onData can do much more then described in this example. These functions can be used to communicate with many kinds of protocols. For more information view the Profile Library Plugin Help documentation. 3. Build out the script one function at a time, use the following information to edit the script. Required function: onProfileLoad The onProfileLoad function is the first of these functions called by the driver. It retrieves driver metadata, identifying the interface between the script and the driver by specifying the version of Universal Device Driver with which it was created as well as the mode. For more information on the mode please view the Profile Library plug-in help. Note: The only supported version is 2.0. Any other value is rejected, leading to failure of all subsequent functions. Any exception thrown out of any of the “framework” functions is caught and results in failure of the current operation. An exception thrown out of: • onProfileLoad causes all subsequent operations to fail until corrected • onValidateTag causes the tag address to be treated as “invalid” • onTagsRequest causes the read or write operation on the current tag to fail • onData causes the read or write operation on the current tag to fail Below is the entire onProfileLoad function: function onProfileLoad() { return { version: “2.0”, mode: “Client” }; } Required function: onValidateTag The onValidateTag script function is to validate the address syntax of a tag and the data type, which is central to communicating with a device. In the case of a Modbus device, this function ensures that an address is a holding register in the supported range. If desired, add logic to this function to modify various tag fields, such as providing a valid default data type,r modifying an address format to enforce consistency among tag addresses, or assigning a bulkId to group specific tags together. For the onValidateTag function in this Modbus example, review the sections: www.ptc.com 6 ©2021-2023 PTC, Inc. All Rights Reserved. // Validate the address is a holding register in the supported range let tagAddress = info.tag.address; try { let numericAddress = parseInt(tagAddress, 10); if (numericAddress < MINREGISTERADDRESS || numericAddress > MAXREGISTERADDRESS || isNaN(numericAddress)) { info.tag.valid = false; return info.tag; } // If grouping tags into bulks, assign bulkId now. // Otherwise, the next bulkId is assigned by default. let bulkId = Math.floor((numericAddress - MINREGISTERADDRESS)/BULKREGISTERCOUNT); info.tag.bulkId = bulkId; log(`Modbus Ethernet onValidateTag: Bulk register count ${BULKREGISTERCOUNT}, address ${tagAddress}, bulkId ${info.tag.bulkId}`, VERBOSE_LOGGING); info.tag.valid = true; return info.tag; } catch (e) { // Use log to provide helpful information that can assist with error resolution log(`Unexpected error (onValidateTag): ${e.message}`, VERBOSE_LOGGING); info.tag.valid = false; return info.tag; } The code above offers a look at the JavaScript object info that the driver provides to the script writer. This object is meant to hold data to be exchanged between the script and the driver. It checks the address received from the driver (info.tag.address) and verifies it is in the expected range for a Modbus holding register as defined by constants MINREGISTERADDRESS, MAXREGISTERADDRESS. If it’s not in that range, fail the tag being added by setting the valid field of the tag to false: info.tag.valid = false. The script also defines the bulkId field for each tag. The register in the address along with the BULKREGISTERCOUNT constant facilitates assigning the bulkId that allows blocking together consecutive registers. Once the tags are blocked together, the Universal Device driver will then provide them in the tags object passed to the onTagsRequest and onData functions. // Provide a valid default data type based on register // Note: "Default" is an invalid data type let validDataTypes = {"3": "Word", "4": "Word"} if (info.tag.dataType === "Default") { let registerChar = info.tag.address.charAt(0); info.tag.dataType = validDataTypes[registerChar]; } /* www.ptc.com 7 ©2021-2023 PTC, Inc. All Rights Reserved. * The regular expression to compare address to. * ^4 starts with '4' * 0* find zero or more occurrences of '0' * 1$ ends with '1' */ let addressRegex = /^40*1$/; // Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex if (addressRegex.test(info.tag.address)) { info.tag.address = "40001"; } The above code provides examples of logic to modify various tag fields. The first code block resets the data type if Default is initially selected. While Default is a Kepware server data type, it is an invalid return value for a tag data type (i.e., info.tag.dataType). As such, provide an appropriate and valid data type based on the register if the data type is set as Default. The second code block uses a regex to recognize semi-correct addresses and modify them accordingly. In the above implementation, this logic adjusts tag addresses with too few or too many zeros; for example, ‘401’ or ‘400001` is changed to ‘40001’. Below is the entire onValidateTag function: function onValidateTag(info) { // Provide a valid default data type based on register // Note: "Default" is an invalid data type let validDataTypes = {"3": "Long", "4": "DWord"} if (info.tag.dataType === "Default") { let registerChar = info.tag.address.charAt(0); info.tag.dataType = validDataTypes[registerChar]; } /* * The regular expression to compare address to. * ^4 starts with '4' * 0* find zero or more occurrences of '0' * 1$ ends with '1' */ let addressRegex = /^40*1$/; // Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex if (addressRegex.test(info.tag.address)) { info.tag.address = "40001"; } // Validate the address is a holding register in the supported range let tagAddress = info.tag.address; try { www.ptc.com 8 ©2021-2023 PTC, Inc. All Rights Reserved. let numericAddress = parseInt(tagAddress, 10); if (numericAddress < MINREGISTERADDRESS || numericAddress > MAXREGISTERADDRESS || isNaN(numericAddress)) { info.tag.valid = false; return info.tag; } // If grouping tags into bulks, assign bulkId now. // Otherwise, the next bulkId is assigned by default. let bulkId = Math.floor((numericAddress - MINREGISTERADDRESS)/BULKREGISTERCOUNT); info.tag.bulkId = bulkId; log(`Modbus Ethernet onValidateTag: Bulk register count ${BULKREGISTERCOUNT}, address ${tagAddress}, bulkId ${info.tag.bulkId}`, VERBOSE_LOGGING); info.tag.valid = true; return info.tag; } catch (e) { // Use log to provide helpful information that can assist with error resolution log(`Unexpected error (onValidateTag): ${e.message}`, VERBOSE_LOGGING); info.tag.valid = false; return info.tag; } } Required function: onTagsRequest The onTagsRequest script function builds a packet of bytes that is sent to the target Modbus device. In the example implementation, the onTagsRequest function makes use of two helper functions to build action-specific packet: BuildReadMessage and BuildWriteMessage: function onTagsRequest(info) { let action = "Fail"; if (info.type === "Read") { let readData = BuildReadMessage(info.tags); // Evaluate if the data was successfully built if (readData.length === 12) { action = "Receive"; } return { action: action, data: readData }; } else if (info.type === "Write") { SENTWRITEDATA = BuildWriteMessage(info.tags); // Evaluate if the data was successfully built www.ptc.com 9 ©2021-2023 PTC, Inc. All Rights Reserved. if (SENTWRITEDATA.length === 12) { action = "Receive"; } return { action: action, data: SENTWRITEDATA }; } } Unlike the onTagsRequest function, these helper functions are not required; they help make the script more manageable. Let’s dive into these helper functions now. Helper Function: BuildReadMessage This function builds into the packet the function code for a Modbus read to ensure that the read is on the appropriate address(es). Most of the Modbus-specific pieces of this snippet are documented in code comments with the important parts called out. The Modbus protocol supports blocking / bulk read and write functionality. The Universal Device Driver supports blocking tags for reads but does not support blocking tags for writes. The tags parameter is an array containing at least one tag element. If, in onValidateTag, the script assigned the same bulkId to more than one tag, then those tags sharing a bulkId are included in the array when the request type is Read. function BuildReadMessage (tags) { // This should never happen, but it's best practice if (tags.length === 0) { throw "No tags were requested for read request."; } // Sort the Modbus registers low to high let registers = []; for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } registers.sort (sortNumber); // Find the lowest register, and the number of registers required to read the whole block let first = registers[0]; let count = registers[registers.length - 1] - first + 1; // Get the zero-based register index to make the request first -= 40001; The code above checks the tags component of the JavaScript object info (i.e. info.tags). This component holds an array of tags. Each tag has an address used to build a request packet for a read. The beginning of this section of code ensures that the driver has given a tag to build a request packet. If the length of the tags array is zero, it exits the function because there's no reason for the driver to build a request packet if no tag – and in turn, no address – is provided. www.ptc.com 10 ©2021-2023 PTC, Inc. All Rights Reserved. // Update the transaction ID in the stateful transaction object if (TXID === undefined) { TXID = 0; } else { TXID++; } JavaScript is not a strongly typed language, making it possible to modify a variable's type or composition at runtime. This is something to take advantage of within the BuildReadMessage function. The above code snippet updates the value of a global variable TXID, which represents a transaction ID exchanged between the script and the driver. Use this global variable to keep track of the number of times it is building packets to transmit to the device. It's important to keep track of this because the transaction ID is a necessary part of the Modbus protocol, as seen in the next step. TXID is stateful between transactions because it is shared between the script and driver and maintains state across transactions. Every time this function is called, the transaction ID value maintains the state it was the last time it was changed at runtime. // Build the Modbus Ethernet data let data = // ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-| [hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03, ------Starting Address-------|-------Register count--------| hiByte(first), loByte(first), hiByte(count), loByte(count)] The above shows the packet being constructed. It is an array of bytes to be sent to the Modbus device. The code comments the different parts of the packet that are defined in the Modbus protocol; for instance, the TXID described earlier is used in the protocol as the top two bytes. Note: Only bytes are currently supported for the data array. Below is the entire BuildReadMessage function: function BuildReadMessage (tags) { // This should never happen, but it's best practice if (tags.length === 0) { throw "No tags were requested for read request."; } // Sort the Modbus registers low to high let registers = []; for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } registers.sort (sortNumber); // Find the lowest register, and the number of registers required to read the whole block let first = registers[0]; let count = registers[registers.length - 1] - first + 1; // Get the zero-based register index to make the request first -= 40001; www.ptc.com 11 ©2021-2023 PTC, Inc. All Rights Reserved. // Initialize or update the transaction ID in the stateful transaction object if (TXID === undefined) { TXID = 0; } else { TXID++; } // Build the Modbus Ethernet data let data = // ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-|------Starting Address--- - [hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03, hiByte(first), ---|-------Register count--------| loByte(first), hiByte(count), loByte(count)] return data; } Helper Function: BuildWriteMessage The BuildWriteMessage function is similar to the BuildReadMessage function in that it assists with building an array of bytes to send the device. However, this function facilitates writing a value to, rather than reading a value from, a Modbus device. Note: Not all devices support writes. If the target device does support writes, the BuildWriteMessage function – in conjunction with the ParseWriteMessage function – provides an example of how to implement this functionality. // This should never happen but it's best practice if (tags.length === 0) { throw "No tags were requested for write request."; } // Sort the Modbus registers low to high let register = parseInt(tags[0].address, 10); register -= 40001; // Get the value to write which is located in the first // element in the tags[n].value object let value = parseInt(tags[0].value); The code above assigns the integer value of the tag address to the variable register. Additionally, is assigns the value of the first tag value to the variable value since KEPServerEX only allows single writes. // Build the Modbus Ethernet data let data = // ----Transaction ID-----|-Protocol--|---Length--|Server|-Fxn-| www.ptc.com 12 ©2021-2023 PTC, Inc. All Rights Reserved. [ hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x06, --------Starting Address----------|-------value to write--------| hiByte(register), loByte(register), hiByte(value), loByte(value) ]; return data; The above shows how to build up a write packet, which is very similar to building a read packet within the BuildReadMessage function. Required function: onData The onData script function parses the array of bytes received from a Modbus device. In the example implementation, as was the case with the onTagsRequest function, the onData function uses two helper functions to parse responses from a Modbus device: ParseReadMessage and ParseWriteMessage: function onData(info) { let action = ACTIONFAILURE; if (info.type === "Read") { let tags = ParseReadMessage(info.tags, info.data); // Evaluate if the data was successfully parsed from the packet if (tags[0].value != null || tags[0].quality != null) { action = ACTIONCOMPLETE; } return { action: action, tags: tags }; } else if (info.type === "Write") { action = ParseWriteMessage(info.data); return { action: action, tags: info.tags }; } } Helper Function: ParseReadMessage This function's purpose is to parse an incoming packet into a tag value to update the respective tag in the server. The incoming packet is passed to the script via the JavaScript object information as the returned byte array is contained in its data component (i.e. info.data). The function determines what information is important based on the protocol specification and extracts the value for the tag/address. This value is assigned to the value field of the tag (e.g. info.tags[0].value) and then returned from the function, which is how the tag is updated in the server. www.ptc.com 13 ©2021-2023 PTC, Inc. All Rights Reserved. function ParseReadMessage(tags, data) { // This should never happen but it's best practice if (tags.length === 0) { throw "No tags were requested for read request."; } log(`Modbus Ethernet ParseReadMessage: data ${JSON.stringify(data)}`, VERBOSE_LOGGING); // Convert the string addresses to integers (eg 40001) let registers = []; for(let i=0; i < tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } // Find the lowest numbered register - this is the starting address let startingAddress = Array.min (registers); // MBE Response values start here: let offset = 9; // Enough bytes? if (data.length < offset + 2 * registers.length) { // Iterate the registers and set the quality of each tag to bad for (let i = 0; i < registers.length; ++i) { // Log message only once for this response if (i === 0) { if (data.length === offset){ log(`Modbus Ethernet ParseReadMessage: Device returned an error code ${data[7]}, ${data[8]}`); } else { log(`Modbus Ethernet ParseReadMessage: Invalid response from device`); } } tags[i].quality = "Bad"; } } The code above performs error checking and gathering some information about the transaction. If the number of bytes in the response is not the number of bytes expected, then the script sets the quality of each tag to Bad. If the response appears to include an error code from the device, then the script provides that information in the message passed to the log function. Otherwise, the script logs a message indicating an invalid response from the device. The result is an updated tags component of the JavaScript object info to be shared with the driver and ultimately used to update the tag qualities in the server. // Iterate the registers and lookup the response value for each for (let i = 0; i < registers.length; ++i) { // Calculate the index of this register's value in the response buffer let index = registers[i] - startingAddress; // Extract it from the response buffer www.ptc.com 14 ©2021-2023 PTC, Inc. All Rights Reserved. let hi = data[2*index + offset]; let lo = data[2*index + offset + 1]; tags[i].value = (wordFromBytes (hi, lo)); } return tags; The code above extracts the value returned from the device and assigns it to the appropriate tag to be used to update the tag value in the server. The result is an updated tags component of the JavaScript object info to be shared with the driver and ultimately used to update the tag values in the server. Below is the entire ParseReadMessage function. function ParseReadMessage(tags, data) { // This should never happen but it's best practice if (tags.length === 0) { throw "No tags were requested for read request."; } log(`Modbus Ethernet ParseReadMessage: data ${JSON.stringify(data)}`, VERBOSE_LOGGING); // Convert the string addresses to integers (eg 40001) let registers = []; for(let i=0; i < tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } // Find the lowest numbered register - this is the starting address let startingAddress = Array.min (registers); // MBE Response values start here: let offset = 9; // Enough bytes? if (data.length < offset + 2 * registers.length) { // Iterate the registers and set the quality of each tag to bad for (let i = 0; i < registers.length; ++i) { // Log message only once for this response if (i === 0) { if (data.length === offset){ log(`Modbus Ethernet ParseReadMessage: Device returned an error code ${data[7]}, ${data[8]}`); } else { log(`Modbus Ethernet ParseReadMessage: Invalid response from device`); } } tags[i].quality = "Bad"; } www.ptc.com 15 ©2021-2023 PTC, Inc. All Rights Reserved. } else { // Iterate the registers and lookup the response value for each. // Assigning the quality of the tag is optional. If undefined, Good is assumed. for (let i = 0; i < registers.length; ++i) { // Calc the index of this register's value in the response buffer let index = registers[i] - startingAddress; // Extract the value from the response buffer let hi = data[2*index + offset]; let lo = data[2*index + offset + 1]; tags[i].value = (wordFromBytes (hi, lo)); } } return tags; } Helper Function: ParseWriteMessage The purpose of the ParseWriteMessage function is to determine if the write was successful. Most devices respond that the request was received and executed. In the case of Modbus, the response echoes the request, which makes it possible to compare the returned message with the sent message that was saved in the global variable SENTWRITEDATA. Below is the entire ParseWriteMessage function: function ParseWriteMessage(data) { // Modbus echoes a write request so if the data sent // does not match the data received, then the write fails SENTWRITEDATA.forEach((e1) => data.forEach((e2) => { if (e1 !== e2) { return "Fail"; } })); return "Complete"; } 以上分析总结出重点
09-30
3.5 Edit the Script 1. Launch a text or code editor to create a new JavaScript file. 2. Review the script one function at a time. There are four functions that must be implemented in the script to support solicited ethernet communications. • onProfileLoad: Retrieves driver metadata • onValidateTag: Verifies the address and data type created in the configuration or any dynamic tags created in an OPC client are valid for the end device connected • onTagsRequest: Builds a packet of bytes to transmit to the device across the wire. • onData: Interprets the response from the device and updates tag values or indicates if the read or write operation was successful based on the data in the response. Note: onTagsRequest and onData can do much more then described in this example. These functions can be used to communicate with many kinds of protocols. For more information view the Profile Library Plugin Help documentation. 3. Build out the script one function at a time, use the following information to edit the script. Required function: onProfileLoad The onProfileLoad function is the first of these functions called by the driver. It retrieves driver metadata, identifying the interface between the script and the driver by specifying the version of Universal Device Driver with which it was created as well as the mode. For more information on the mode please view the Profile Library plug-in help. Note: The only supported version is 2.0. Any other value is rejected, leading to failure of all subsequent functions. Any exception thrown out of any of the “framework” functions is caught and results in failure of the current operation. An exception thrown out of: • onProfileLoad causes all subsequent operations to fail until corrected • onValidateTag causes the tag address to be treated as “invalid” • onTagsRequest causes the read or write operation on the current tag to fail • onData causes the read or write operation on the current tag to fail Below is the entire onProfileLoad function: function onProfileLoad() { return { version: “2.0”, mode: “Client” }; } Required function: onValidateTag The onValidateTag script function is to validate the address syntax of a tag and the data type, which is central to communicating with a device. In the case of a Modbus device, this function ensures that an address is a holding register in the supported range. If desired, add logic to this function to modify various tag fields, such as providing a valid default data type,r modifying an address format to enforce consistency among tag addresses, or assigning a bulkId to group specific tags together. For the onValidateTag function in this Modbus example, review the sections: // Validate the address is a holding register in the supported range let tagAddress = info.tag.address; try { let numericAddress = parseInt(tagAddress, 10); if (numericAddress < MINREGISTERADDRESS || numericAddress > MAXREGISTERADDRESS || isNaN(numericAddress)) { info.tag.valid = false; return info.tag; } // If grouping tags into bulks, assign bulkId now. // Otherwise, the next bulkId is assigned by default. let bulkId = Math.floor((numericAddress - MINREGISTERADDRESS)/BULKREGISTERCOUNT); info.tag.bulkId = bulkId; log(`Modbus Ethernet onValidateTag: Bulk register count ${BULKREGISTERCOUNT}, address ${tagAddress}, bulkId ${info.tag.bulkId}`, VERBOSE_LOGGING); info.tag.valid = true; return info.tag; } catch (e) { // Use log to provide helpful information that can assist with error resolution log(`Unexpected error (onValidateTag): ${e.message}`, VERBOSE_LOGGING); info.tag.valid = false; return info.tag; } The code above offers a look at the JavaScript object info that the driver provides to the script writer. This object is meant to hold data to be exchanged between the script and the driver. It checks the address received from the driver (info.tag.address) and verifies it is in the expected range for a Modbus holding register as defined by constants MINREGISTERADDRESS, MAXREGISTERADDRESS. If it’s not in that range, fail the tag being added by setting the valid field of the tag to false: info.tag.valid = false. The script also defines the bulkId field for each tag. The register in the address along with the BULKREGISTERCOUNT constant facilitates assigning the bulkId that allows blocking together consecutive registers. Once the tags are blocked together, the Universal Device driver will then provide them in the tags object passed to the onTagsRequest and onData functions. // Provide a valid default data type based on register // Note: "Default" is an invalid data type let validDataTypes = {"3": "Word", "4": "Word"} if (info.tag.dataType === "Default") { let registerChar = info.tag.address.charAt(0); info.tag.dataType = validDataTypes[registerChar]; } /* * The regular expression to compare address to. * ^4 starts with '4' * 0* find zero or more occurrences of '0' * 1$ ends with '1' */ let addressRegex = /^40*1$/; // Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex if (addressRegex.test(info.tag.address)) { info.tag.address = "40001"; } The above code provides examples of logic to modify various tag fields. The first code block resets the data type if Default is initially selected. While Default is a Kepware server data type, it is an invalid return value for a tag data type (i.e., info.tag.dataType). As such, provide an appropriate and valid data type based on the register if the data type is set as Default. The second code block uses a regex to recognize semi-correct addresses and modify them accordingly. In the above implementation, this logic adjusts tag addresses with too few or too many zeros; for example, ‘401’ or ‘400001` is changed to ‘40001’. Below is the entire onValidateTag function: function onValidateTag(info) { // Provide a valid default data type based on register // Note: "Default" is an invalid data type let validDataTypes = {"3": "Long", "4": "DWord"} if (info.tag.dataType === "Default") { let registerChar = info.tag.address.charAt(0); info.tag.dataType = validDataTypes[registerChar]; } /* * The regular expression to compare address to. * ^4 starts with '4' * 0* find zero or more occurrences of '0' * 1$ ends with '1' */ let addressRegex = /^40*1$/; // Correct a "semi-correct" tag address (e.g. 401 or 400001 --> 40001) with regex if (addressRegex.test(info.tag.address)) { info.tag.address = "40001"; } // Validate the address is a holding register in the supported range let tagAddress = info.tag.address; try {let numericAddress = parseInt(tagAddress, 10); if (numericAddress < MINREGISTERADDRESS || numericAddress > MAXREGISTERADDRESS || isNaN(numericAddress)) { info.tag.valid = false; return info.tag; } // If grouping tags into bulks, assign bulkId now. // Otherwise, the next bulkId is assigned by default. let bulkId = Math.floor((numericAddress - MINREGISTERADDRESS)/BULKREGISTERCOUNT); info.tag.bulkId = bulkId; log(`Modbus Ethernet onValidateTag: Bulk register count ${BULKREGISTERCOUNT}, address ${tagAddress}, bulkId ${info.tag.bulkId}`, VERBOSE_LOGGING); info.tag.valid = true; return info.tag; } catch (e) { // Use log to provide helpful information that can assist with error resolution log(`Unexpected error (onValidateTag): ${e.message}`, VERBOSE_LOGGING); info.tag.valid = false; return info.tag; } } Required function: onTagsRequest The onTagsRequest script function builds a packet of bytes that is sent to the target Modbus device. In the example implementation, the onTagsRequest function makes use of two helper functions to build action-specific packet: BuildReadMessage and BuildWriteMessage: function onTagsRequest(info) { let action = "Fail"; if (info.type === "Read") { let readData = BuildReadMessage(info.tags); // Evaluate if the data was successfully built if (readData.length === 12) { action = "Receive"; } return { action: action, data: readData }; } else if (info.type === "Write") { SENTWRITEDATA = BuildWriteMessage(info.tags); // Evaluate if the data was successfully built if (SENTWRITEDATA.length === 12) { action = "Receive"; } return { action: action, data: SENTWRITEDATA }; } } Unlike the onTagsRequest function, these helper functions are not required; they help make the script more manageable. Let’s dive into these helper functions now. Helper Function: BuildReadMessage This function builds into the packet the function code for a Modbus read to ensure that the read is on the appropriate address(es). Most of the Modbus-specific pieces of this snippet are documented in code comments with the important parts called out. The Modbus protocol supports blocking / bulk read and write functionality. The Universal Device Driver supports blocking tags for reads but does not support blocking tags for writes. The tags parameter is an array containing at least one tag element. If, in onValidateTag, the script assigned the same bulkId to more than one tag, then those tags sharing a bulkId are included in the array when the request type is Read. function BuildReadMessage (tags) { // This should never happen, but it's best practice if (tags.length === 0) { throw "No tags were requested for read request."; } // Sort the Modbus registers low to high let registers = []; for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } registers.sort (sortNumber); // Find the lowest register, and the number of registers required to read the whole block let first = registers[0]; let count = registers[registers.length - 1] - first + 1; // Get the zero-based register index to make the request first -= 40001; The code above checks the tags component of the JavaScript object info (i.e. info.tags). This component holds an array of tags. Each tag has an address used to build a request packet for a read. The beginning of this section of code ensures that the driver has given a tag to build a request packet. If the length of the tags array is zero, it exits the function because there's no reason for the driver to build a request packet if no tag – and in turn, no address – is provided. // Update the transaction ID in the stateful transaction object if (TXID === undefined) { TXID = 0; } else { TXID++; } JavaScript is not a strongly typed language, making it possible to modify a variable's type or composition at runtime. This is something to take advantage of within the BuildReadMessage function. The above code snippet updates the value of a global variable TXID, which represents a transaction ID exchanged between the script and the driver. Use this global variable to keep track of the number of times it is building packets to transmit to the device. It's important to keep track of this because the transaction ID is a necessary part of the Modbus protocol, as seen in the next step. TXID is stateful between transactions because it is shared between the script and driver and maintains state across transactions. Every time this function is called, the transaction ID value maintains the state it was the last time it was changed at runtime. // Build the Modbus Ethernet data let data = // ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-| [hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03, ------Starting Address-------|-------Register count--------| hiByte(first), loByte(first), hiByte(count), loByte(count)] The above shows the packet being constructed. It is an array of bytes to be sent to the Modbus device. The code comments the different parts of the packet that are defined in the Modbus protocol; for instance, the TXID described earlier is used in the protocol as the top two bytes. Note: Only bytes are currently supported for the data array. Below is the entire BuildReadMessage function: function BuildReadMessage (tags) { // This should never happen, but it's best practice if (tags.length === 0) { throw "No tags were requested for read request."; } // Sort the Modbus registers low to high let registers = []; for(let i=0; i<tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } registers.sort (sortNumber); // Find the lowest register, and the number of registers required to read the whole block let first = registers[0]; let count = registers[registers.length - 1] - first + 1; // Get the zero-based register index to make the request first -= 40001; www.ptc.com 11 ©2021-2023 PTC, Inc. All Rights Reserved. // Initialize or update the transaction ID in the stateful transaction object if (TXID === undefined) { TXID = 0; } else { TXID++; } // Build the Modbus Ethernet data let data = // ----Transaction ID------|-Protocol--|---Length--|Server|-Fxn-|------Starting Address--- - [hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x03, hiByte(first), ---|-------Register count--------| loByte(first), hiByte(count), loByte(count)] return data; } Helper Function: BuildWriteMessage The BuildWriteMessage function is similar to the BuildReadMessage function in that it assists with building an array of bytes to send the device. However, this function facilitates writing a value to, rather than reading a value from, a Modbus device. Note: Not all devices support writes. If the target device does support writes, the BuildWriteMessage function – in conjunction with the ParseWriteMessage function – provides an example of how to implement this functionality. // This should never happen but it's best practice if (tags.length === 0) { throw "No tags were requested for write request."; } // Sort the Modbus registers low to high let register = parseInt(tags[0].address, 10); register -= 40001; // Get the value to write which is located in the first // element in the tags[n].value object let value = parseInt(tags[0].value); The code above assigns the integer value of the tag address to the variable register. Additionally, is assigns the value of the first tag value to the variable value since KEPServerEX only allows single writes. // Build the Modbus Ethernet data let data = // ----Transaction ID-----|-Protocol--|---Length--|Server|-Fxn-| www.ptc.com 12 ©2021-2023 PTC, Inc. All Rights Reserved. [ hiByte(TXID), loByte(TXID), 0x00, 0x00, 0x00, 0x06, 0x00, 0x06, --------Starting Address----------|-------value to write--------| hiByte(register), loByte(register), hiByte(value), loByte(value) ]; return data; The above shows how to build up a write packet, which is very similar to building a read packet within the BuildReadMessage function. Required function: onData The onData script function parses the array of bytes received from a Modbus device. In the example implementation, as was the case with the onTagsRequest function, the onData function uses two helper functions to parse responses from a Modbus device: ParseReadMessage and ParseWriteMessage: function onData(info) { let action = ACTIONFAILURE; if (info.type === "Read") { let tags = ParseReadMessage(info.tags, info.data); // Evaluate if the data was successfully parsed from the packet if (tags[0].value != null || tags[0].quality != null) { action = ACTIONCOMPLETE; } return { action: action, tags: tags }; } else if (info.type === "Write") { action = ParseWriteMessage(info.data); return { action: action, tags: info.tags }; } } Helper Function: ParseReadMessage This function's purpose is to parse an incoming packet into a tag value to update the respective tag in the server. The incoming packet is passed to the script via the JavaScript object information as the returned byte array is contained in its data component (i.e. info.data). The function determines what information is important based on the protocol specification and extracts the value for the tag/address. This value is assigned to the value field of the tag (e.g. info.tags[0].value) and then returned from the function, which is how the tag is updated in the server. function ParseReadMessage(tags, data) { // This should never happen but it's best practice if (tags.length === 0) { throw "No tags were requested for read request."; } log(`Modbus Ethernet ParseReadMessage: data ${JSON.stringify(data)}`, VERBOSE_LOGGING); // Convert the string addresses to integers (eg 40001) let registers = []; for(let i=0; i < tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } // Find the lowest numbered register - this is the starting address let startingAddress = Array.min (registers); // MBE Response values start here: let offset = 9; // Enough bytes? if (data.length < offset + 2 * registers.length) { // Iterate the registers and set the quality of each tag to bad for (let i = 0; i < registers.length; ++i) { // Log message only once for this response if (i === 0) { if (data.length === offset){ log(`Modbus Ethernet ParseReadMessage: Device returned an error code ${data[7]}, ${data[8]}`); } else { log(`Modbus Ethernet ParseReadMessage: Invalid response from device`); } } tags[i].quality = "Bad"; } } The code above performs error checking and gathering some information about the transaction. If the number of bytes in the response is not the number of bytes expected, then the script sets the quality of each tag to Bad. If the response appears to include an error code from the device, then the script provides that information in the message passed to the log function. Otherwise, the script logs a message indicating an invalid response from the device. The result is an updated tags component of the JavaScript object info to be shared with the driver and ultimately used to update the tag qualities in the server. // Iterate the registers and lookup the response value for each for (let i = 0; i < registers.length; ++i) { // Calculate the index of this register's value in the response buffer let index = registers[i] - startingAddress; // Extract it from the response buffer www.ptc.com 14 ©2021-2023 PTC, Inc. All Rights Reserved. let hi = data[2*index + offset]; let lo = data[2*index + offset + 1]; tags[i].value = (wordFromBytes (hi, lo)); } return tags; The code above extracts the value returned from the device and assigns it to the appropriate tag to be used to update the tag value in the server. The result is an updated tags component of the JavaScript object info to be shared with the driver and ultimately used to update the tag values in the server. Below is the entire ParseReadMessage function. function ParseReadMessage(tags, data) { // This should never happen but it's best practice if (tags.length === 0) { throw "No tags were requested for read request."; } log(`Modbus Ethernet ParseReadMessage: data ${JSON.stringify(data)}`, VERBOSE_LOGGING); // Convert the string addresses to integers (eg 40001) let registers = []; for(let i=0; i < tags.length; i++) { registers[i] = parseInt(tags[i].address, 10); } // Find the lowest numbered register - this is the starting address let startingAddress = Array.min (registers); // MBE Response values start here: let offset = 9; // Enough bytes? if (data.length < offset + 2 * registers.length) { // Iterate the registers and set the quality of each tag to bad for (let i = 0; i < registers.length; ++i) { // Log message only once for this response if (i === 0) { if (data.length === offset){ log(`Modbus Ethernet ParseReadMessage: Device returned an error code ${data[7]}, ${data[8]}`); } else { log(`Modbus Ethernet ParseReadMessage: Invalid response from device`); } } tags[i].quality = "Bad"; } www.ptc.com 15 ©2021-2023 PTC, Inc. All Rights Reserved. } else { // Iterate the registers and lookup the response value for each. // Assigning the quality of the tag is optional. If undefined, Good is assumed. for (let i = 0; i < registers.length; ++i) { // Calc the index of this register's value in the response buffer let index = registers[i] - startingAddress; // Extract the value from the response buffer let hi = data[2*index + offset]; let lo = data[2*index + offset + 1]; tags[i].value = (wordFromBytes (hi, lo)); } } return tags; } Helper Function: ParseWriteMessage The purpose of the ParseWriteMessage function is to determine if the write was successful. Most devices respond that the request was received and executed. In the case of Modbus, the response echoes the request, which makes it possible to compare the returned message with the sent message that was saved in the global variable SENTWRITEDATA. Below is the entire ParseWriteMessage function: function ParseWriteMessage(data) { // Modbus echoes a write request so if the data sent // does not match the data received, then the write fails SENTWRITEDATA.forEach((e1) => data.forEach((e2) => { if (e1 !== e2) { return "Fail"; } })); return "Complete"; } 把3.5以上各个代码段,整理成一段完整的代码,这段代码必须有合理性,可直接复制出来能运行的代码。
09-30
/***************************************************************************** * * This file is copyright (c) 2023 PTC, Inc. * All rights reserved. * * Name: HTTP-profile * Description: A simple HTTP example profile that queries weather data * from a weather REST-API. * Version: 0.3.0 * Revision history: * 0.3.0 Added bulkId property to the Tag object. * Added quality property to the CompleteTag object. * Added bulkId property to the OnValidateTagResult. ******************************************************************************/ /** * @typedef {string} MessageType - Type of communication "Read", "Write". */ /** * @typedef {string} DataType - KEPServerEx datatype "Default", "String", "Boolean", "Char", "Byte", "Short", "Word", "Long", "DWord", "Float", "Double", "BCD", "LBCD", "Date", "LLong", "QWord". */ /** * @typedef {number[]} Data - Array of data bytes. Uint8 byte array. */ /** * @typedef {object} Tag * @property {string} Tag.address - Tag address. * @property {DataType} Tag.dataType - Kepserver data type. * @property {boolean} Tag.readOnly - Indicates permitted communication mode. * @property {integer} Tag.bulkId - Integer that identifies the group into which to bulk the tag with other tags. */ /** * @typedef {object} CompleteTag * @property {string} Tag.address - Tag address. * @property {*} Tag.value - (optional) Tag value. * @property {string} Tag.quality - (optional) Tag quality "Good", "Bad", or "Uncertain". */ /** * @typedef {object} OnProfileLoadResult * @property {string} version - Version of the driver. * @property {string} mode - Operation mode of the driver "Client", "Server". */ /** * @typedef {object} OnValidateTagResult * @property {string} address - (optional) Fixed up tag address. * @property {DataType} dataType - (optional) Fixed up Kepserver data type. Required if input dataType is "Default". * @property {boolean} readOnly - (optional) Fixed up permitted communication mode. * @property {integer} bulkId - (optional) Integer that identifies the group into which to bulk the tag with other tags. * Universal Device Driver assigns the next available bulkId, if undefined. If defined for one tag, * must define for all tags. * @property {boolean} valid - Indicates address validity. */ /** * @typedef {object} OnTransactionResult * @property {string} action - Action of the operation: "Complete", "Receive", "Fail". * @property {CompleteTag[]} tags - Array of tags (if any active) to complete. Undefined indicates tag is not complete. * @property {Data} data - The resulting data (if any) to send. Undefined indicates no data to send. */ /** Global variable for driver version */ const VERSION = "2.0"; /** Global variable for driver mode */ const MODE = "Client" /** Global variable for action */ const ACTIONCOMPLETE = "Complete" const ACTIONFAILURE = "Fail" const ACTIONRECEIVE = "Receive" /** Global variables for communication modes used in transactions */ const READ = "Read" const WRITE = "Write" /** * Retrieve driver metadata. * * @return {OnProfileLoadResult} - Driver metadata. */ function onProfileLoad() { return { version: VERSION, mode: MODE }; } /** * Validate an address. * * @param {object} info - Object containing the function arguments. * @param {Tag} info.tag - Single tag. * * @return {OnValidateTagResult} - Single tag with a populated '.valid' field set. * * * Unlike physical devices an address doesn't mean anything for the http protocol * However, we can still use this function to our advantage. The HTTP GET request * returns a JSON object. We can use this object to return multiple tag values. * Example JSON: * { * "visibility": 1000 * "wind": { * "speed": 8.38 * "direction": "north" * } * "weather": [ * { * "main": "sunny" * "description": "partly sunny" * } * { * "main": "sunny" * "description": "mostly sunny" * } * ] * } * * There are three types of addresses we can allow in this case * 1. <key> ex. Tag address = “visibility” * 2. <key>:<value> ex. Tag address = “wind:speed” * 3. <key>[<index>]:<value> ex. Tag address = “weather[0]:main” * * We will use this address to help parse the data in onData */ function onValidateTag(info) { // Format the address for validation info.tag.address = info.tag.address.toLowerCase(); /* * The regular expression to compare address to. * ^, & Starting and ending anchors respectively. The match must occur between the two anchors * [a-z]+ At least 1 or more characters between 'a' and 'z' * [0-9]+ At least 1 or more digits between 0 and 9 * ()? Whatever is in the parentheses can appear 0 or 1 times */ let regex = /^[a-z]+(\[[0-9]+\]:[a-z]+$)?(:[a-z]+)?$/; try { // Validate the address against the regular expression if (regex.test(info.tag.address)) { info.tag.valid = true; } else { info.tag.valid = false; } return info.tag } catch (e) { // Use log to provide helpful information that can assist with error resolution log("Unexpected error (onValidateTag): " + e.message); info.tag.valid = false; return info.tag; } } /** * Handle request for a tag to be completed. * * @param {object} info - Object containing the function arguments. * @param {MessageType} info.type - Communication mode for tags. Can be undefined. * @param {Tag[]} info.tags - Tags currently being processed. Can be undefined. * * @return {OnTransactionResult} - The action to take, tags to complete (if any) and/or data to send (if any). */ function onTagsRequest(info) { // Writes are not permitted if (info.type === WRITE){ return {action: ACTIONFAILURE} // data field not needed in "Failure" case } // Build the request as a string let host = "192.241.169.168"; // IP address of api.openweathermap.org // TODO: Fill in the two lines below. See README.md for details let zip = "{{ZIP_CODE}}"; // Zip code let appId = "{{API_KEY}}"; // API key let request = "GET http://" + host + "/data/2.5/weather?APPID=" + appId + "&zip=" + zip + ",us HTTP/1.1\r\n"; request += "Host: " + host + "\r\n"; request += "\r\n"; // Convert string to bytes let readData = stringToBytes(request); return { action: ACTIONRECEIVE, data: readData }; } /** * Handle incoming data. * * @param {object} info - Object containing the function arguments. * @param {MessageType} info.type - Communication mode for tags. Can be undefined. * @param {Tag[]} info.tags - Tags currently being processed. Can be undefined. * @param {Data} info.data - The incoming data. * * @return {OnTransactionResult} - The action to take, tags to complete (if any) and/or data to send (if any). */ function onData(info) { // Writes are not permitted if (info.type === WRITE){ return {action: ACTIONFAILURE} // tags field not needed in "Failure" case } // Convert the response to a string let stringResponse = ""; for (let i = 0; i < info.data.length; i++) { stringResponse += String.fromCharCode(info.data[i]); } // Get the JSON body of the response let jsonStr = stringResponse.substring(stringResponse.indexOf('{'), stringResponse.lastIndexOf('}') + 1 ); log(`JsonSubstr: ${jsonStr}`) // Parse the JSON string let jsonObj = JSON.parse(jsonStr); // Array to hold tag values let values = []; let action = ACTIONFAILURE; // Evaluate each tag's address and get the JSON value info.tags.forEach(function (tag) { let case1 = /^[a-z]+$/; // Example: Tag address matches "visibility" let case2 = /^[a-z]+:[a-z]+$/; // Example: Tag address matches "wind:speed" let case3 = /^[a-z]+\[[0-9]+\]:[a-z]+$/; // Example: Tag address matches "forecast[0]:main" // let tagValue = null; tag.value = null; if (case1.test(tag.address)) { // Get the JSON values from the provided key tag.value = jsonObj[tag.address]; } else if (case2.test(tag.address)) { // Split the address at the colon let keyValuePair = tag.address.split(':'); // Get the value by parsing the JSON with the Parent key and child key let parentValue = jsonObj[keyValuePair[0]]; tag.value = parentValue[keyValuePair[1]]; } else if (case3.test(tag.address)) { // Get the key value pair as well as the index let keyValuePair = tag.address.split(':'); let parentKey = keyValuePair[0].split('['); let index = parentKey[1].replace(']', ''); // Get the value by parsing the JSON with the Parent key, index and child key let parentValue = jsonObj[parentKey[0]][index]; tag.value = parentValue[keyValuePair[1]]; } // Determine if all tags were parsed successfully if (tag.value != undefined || tag.value != null) { action = ACTIONCOMPLETE; } }); log(JSON.stringify(info.tags)) return { action: action, tags: info.tags }; } /** * Helper function to translate string to bytes. * Required. * * @param {string} str * @return {Data} */ function stringToBytes(str) { let byteArray = []; for (let i = 0; i < str.length; i++) { let char = str.charCodeAt(i) & 0xFF; byteArray.push(char); } // return an array of bytes return byteArray; } 以上案例代码中onProfileLoad 、onValidateTag 、onTagsRequest 、onData、stringToBytes  函数名都是核心函数 分析核心函数 的作用,同时替换案例 的API 并适配了新的数据格式 : 新API地址:http://192.168.17.201:39320/?read=Test.AutoWash.HD1 新API 数据返回 格式 :{"message":"欢迎来到 OPC UA Web 服务"} Tag :取 message 字段 API 没有API_KEY ,可直接 GET 访问就有返回格式, 保留了案例代码 的核心函数结构, 输出JavaScript 代码 。再事整体检查可行性、验证结果 输出完整的 JavaScript 代码。
最新发布
10-14
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值