mysql语句优化不定期更新

本文介绍了MySQL语句优化的方法,如避免在where子句使用!=、<>、or等操作符,避免对字段进行表达式和函数操作等,还提及索引使用和创建的注意事项。同时阐述了LIMIT分页和COUNT()查询的优化。此外,浅谈了MySQL数据库表设计中数据类型、索引设计和SQL优化的关键要点。

mysql语句优化不定期更新:

1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描。如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0

4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num=10 or num=20可以这样查询:
select id from t where num=10
union all
select id from t where num=20

5、下面的查询也将导致全表扫描:(不能前置百分号)select id from t where name like ‘%c%’下面走索引select id from t where name like ‘c%’若要提高效率,可以考虑全文检索。

6、in 和 not in 也要慎用,否则会导致全表扫描,如:select id from t where num in(1,2,3)对于连续的数值,能用 between 就不要用 in 了:select id from t where num between 1 and 3

7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:select id from t where num=@num可以改为强制查询使用索引:select id from t with(index(索引名)) where num=@num

8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where num/2=100应改为:select id from t where num=100*2

9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where substring(name,1,3)=’abc’ –name以abc开头的idselect id from t where datediff(day,createdate,’2005-11-30′)=0 –’2005-11-30′生成的id应改为:select id from t where name like ‘abc%’select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′

10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。

12、不要写一些没有意义的查询,如需要生成一个空表结构:select col1,col2 into #t from t where 1=0这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:create table #t(…)

13、很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b)用下面的语句替换:select num from a where exists(select 1 from b where num=a.num)

14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数较好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21、避免频繁创建和删除临时表,以减少系统表资源的消耗。

22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,较好使 用导出表。

23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONEINPROC 消息。

29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

30、尽量避免大事务操作,提高系统并发能力。

31、优化COUNT()查询
COUNT()可能是被大家误解最多的函数了,它有两种不同的作用,其一是统计某个列值的数量,其二是统计行数。统计列值时,要求列值是非空的,它不会统计NULL。如果确认括号中的表达式不可能为空时,实际上就是在统计行数。

最简单的就是当使用COUNT(*)时,并不是我们所想象的那样扩展成所有的列,实际上,它会忽略所有的列而直接统计行数。我们最常见的误解也就在这儿,在括号内指定了一列却希望统计结果是行数,而且还常常误以为前者的性能会更好。

但实际并非这样,如果要统计行数,直接使用COUNT(*),意义清晰,且性能更好。有时候某些业务场景并不需要完全精确的COUNT值,可以用近似值来代替,EXPLAIN出来的行数就是一个不错的近似值,而且执行EXPLAIN并不需要真正地去执行查询,所以成本非常低。通常来说,执行COUNT()都需要扫描大量的行才能获取到精确的数据,因此很难优化,MySQL层面还能做得也就只有覆盖索引了。如果不还能解决问题,只有从架构层面解决了,比如添加汇总表,或者使用redis这样的外部缓存系统。

32、优化LIMIT分页
当需要分页操作时,通常会使用LIMIT加上偏移量的办法实现,同时加上合适的ORDER BY字句。如果有对应的索引,通常效率会不错,否则,MySQL需要做大量的文件排序操作。

一个常见的问题是当偏移量非常大的时候,比如:LIMIT 10000 20这样的查询,MySQL需要查询10020条记录然后只返回20条记录,前面的10000条都将被抛弃,这样的代价非常高。

优化这种查询一个最简单的办法就是尽可能的使用覆盖索引扫描,而不是查询所有的列。然后根据需要做一次关联查询再返回所有的列。对于偏移量很大时,这样做的效率会提升非常大。考虑下面的查询:

SELECT film_id,description FROM film ORDER BY title LIMIT 50,5;

如果这张表非常大,那么这个查询最好改成下面的样子:

SELECT film.film_id,film.description
FROM film INNER JOIN (
SELECT film_id FROM film ORDER BY title LIMIT 50,5
) AS tmp USING(film_id);

这里的延迟关联将大大提升查询效率,让MySQL扫描尽可能少的页面,获取需要访问的记录后在根据关联列回原表查询所需要的列。

有时候如果可以使用书签记录上次取数据的位置,那么下次就可以直接从该书签记录的位置开始扫描,这样就可以避免使用OFFSET,比如下面的查询:

SELECT id FROM t LIMIT 10000, 10;
改为:
SELECT id FROM t WHERE id > 10000 LIMIT 10;

其他优化的办法还包括使用预先计算的汇总表,或者关联到一个冗余表,冗余表中只包含主键列和需要做排序的列。

浅谈mysql数据库表设计过程中几个关键要点\

1、表设计过程中应该注意的点即数据类型

          1)更小的通常更好  控制字节长度
          
          2)使用合适的数据类型如tinyint只占8个位,char(1024)与varchar(1024)的对比,char用于类似定长数据存储比varchar节省空间,如:uuid(32),可以用char(32).
          
          3)尽量避免NULL建议使用NOT NULL DEFAULT ''  NULL的列会让索引统计和值比较都更复杂。可为NULL的列会占据更多的磁盘空间,在Mysql中也需要更多复杂的处理程序

2、索引设计过程中应该注意的点

          1)选择唯一性索引唯一性索引的值是唯一的,可以更快速的通过该索引来确定某条记录,保证物理上面唯一
          
          2)为经常需要排序、分组和联合操作的字段建立索引经常需要ORDER BY、GROUP BY、DISTINCT和UNION等操作的字段,排序操作会浪费很多时间
          
          3)常作为查询条件的字段建立索引 如果某个字段经常用来做查询条件,那么该字段的查询速度会影响整个表的查询速度          
          
          4)数据少的地方不必建立索引

3、sql优化,explain查看执行计划(注意:扫描行数会影响CPU运行,占用大量内存)

          1) 能够用BETWEEN的就不要用IN 
          
          2) 能够用DISTINCT的就不用GROUP BY
          
          3)  避免数据类型强转
          
          4) 学会采用explain查看执行计划
### 光流法C++源代码解析与应用 #### 光流法原理 光流法是一种在计算机视觉领域中用于追踪视频序列中运动物体的方法。它基于亮度不变性假设,即场景中的点在时间上保持相同的灰度值,从而通过分析连续帧之间的像素变化来估计运动方向和速度。在数学上,光流场可以示为像素位置和时间的一阶导数,即Ex、Ey(空间梯度)和Et(时间梯度),它们共同构成光流方程的基础。 #### C++实现细节 在给定的C++源代码片段中,`calculate`函数负责计算光流场。该函数接收一个图像缓冲区`buf`作为输入,并初始化了几个关键变量:`Ex`、`Ey`和`Et`分别代沿x轴、y轴和时间轴的像素强度变化;`gray1`和`gray2`用于存储当前帧和前一帧的平均灰度值;`u`则示计算出的光流矢量大小。 #### 图像处理流程 1. **初始化和预处理**:`memset`函数被用来清零`opticalflow`数组,它将保存计算出的光流数据。同时,`output`数组被填充为白色,这通常用于可视化结果。 2. **灰度计算**:对每一像素点进行处理,计算其灰度值。这里采用的是RGB通道平均值的计算方法,将每个像素的R、G、B值相加后除以3,得到一个近似灰度值。此步骤确保了计算过程的鲁棒性和效率。 3. **光流向量计算**:通过比较当前帧和前一帧的灰度值,计算出每个像素点的Ex、Ey和Et值。这里值得注意的是,光流向量的大小`u`是通过`Et`除以`sqrt(Ex^2 + Ey^2)`得到的,再乘以10进行量化处理,以减少计算复杂度。 4. **结果存储与阈值处理**:计算出的光流值被存储在`opticalflow`数组中。如果`u`的绝对值超过10,则认为该点存在显著运动,因此在`output`数组中将对应位置标记为黑色,形成运动区域的可视化效果。 5. **状态更新**:通过`memcpy`函数将当前帧复制到`prevframe`中,为下一次迭代做准备。 #### 扩展应用:Lukas-Kanade算法 除了上述基础的光流计算外,代码还提到了Lukas-Kanade算法的应用。这是一种更高级的光流计算方法,能够提供更精确的运动估计。在`ImgOpticalFlow`函数中,通过调用`cvCalcOpticalFlowLK`函数实现了这一算法,该函数接受前一帧和当前帧的灰度图,以及窗口大小等参数,返回像素级别的光流场信息。 在实际应用中,光流法常用于目标跟踪、运动检测、视频压缩等领域。通过深入理解和优化光流算法,可以进一步提升视频分析的准确性和实时性能。 光流法及其C++实现是计算机视觉领域的一个重要组成部分,通过对连续帧间像素变化的精细分析,能够有效捕捉和理解动态场景中的运动信息
微信小程序作为腾讯推出的一种轻型应用形式,因其便捷性与高效性,已广泛应用于日常生活中。以下为该平台的主要特性及配套资源说明: 特性方面: 操作便捷,即开即用:用户通过微信内搜索或扫描二维码即可直接使用,无需额外下载安装,减少了对手机存储空间的占用,也简化了使用流程。 多端兼容,统一开发:该平台支持在多种操作系统与设备上运行,开发者无需针对不同平台进行重复适配,可在一个统一的环境中完成开发工作。 功能丰富,接口完善:平台提供了多样化的API接口,便于开发者实现如支付功能、用户身份验证及消息通知等多样化需求。 社交整合,传播高效:小程序深度嵌入微信生态,能有效利用社交关系链,促进用户之间的互动与传播。 开发成本低,周期短:相比传统应用程序,小程序的开发投入更少,开发周期更短,有助于企业快速实现产品上线。 资源内容: “微信小程序-项目源码-原生开发框架-含效果截图示例”这一资料包,提供了完整的项目源码,并基于原生开发方式构建,确保了代码的稳定性与可维护性。内容涵盖项目结构、页面设计、功能模块等关键部分,配有详细说明与注释,便于使用者迅速理解并掌握开发方法。此外,还附有多个实际运行效果的截图,帮助用户直观了解功能实现情况,评估其在实际应用中的现与价值。该资源适用于前端开发人员、技术爱好者及希望拓展业务的机构,具有较高的参考与使用价值。欢迎查阅,助力小程序开发实践。资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 三级标题:MySQL 查询语句优化技巧与最佳实践 在 MySQL 查询语句优化中,应重点关注查询设计、索引使用、结构设计以及执行计划的分析,以提高数据库性能。 避免使用 `SELECT *` 是优化查询的基本原则之一。明确指定需要检索的列,可以减少不必要的数据传输和内存消耗,从而提升查询效率[^3]。例如: ```sql -- 不推荐 SELECT * FROM users; -- 推荐 SELECT id, name, email FROM users; ``` 在查询中使用 `WHERE` 子句进行条件过滤是提高性能的重要手段。通过限制查询结果集的大小,减少数据库扫描的数据量,提升查询效率。同时,应避免在索引列上使用函数或达式,因为这可能导致索引失效,从而引发全扫描,降低查询性能[^2]。 `LIMIT` 的使用可以有效限制返回的行数,尤其在分页查询中非常有用。例如: ```sql SELECT id, name FROM users WHERE status = 'active' LIMIT 10; ``` 避免使用子查询是另一个优化方向。子查询在某些情况下会导致性能下降,尤其是在嵌套层次较深时。可以考虑将子查询改写为 `JOIN` 操作,以提高执行效率。同时,优化 `JOIN` 操作也是关键,应尽量减少连接的数量,并确保连接列上有合适的索引支持[^2]。 索引的使用对查询性能至关重要。选择合适的索引列、使用覆盖索引(即索引包含查询所需的所有字段)以及提高索引选择性(唯一值比例较高的列)都可以显著提升查询速度。多列索引的顺序也应根据查询模式进行合理安排,通常将选择性高的列放在前面[^2]。 结构优化方面,可以采用垂直拆分(将大字段拆分到单独的)和水平分区(按某种规则将数据拆分到多个物理存储中)。此外,选择合适的数据类型也有助于减少存储空间和提升查询效率。 查询缓存机制曾在 MySQL 中广泛使用,但其效果依赖于具体的使用场景。在频繁更新的环境中,查询缓存可能频繁失效,反而增加系统负担。因此,应根据实际业务需求决定是否启用查询缓存,并合理配置其大小。 配置优化也是提升性能的重要手段之一。例如,调整连接池大小可以避免连接资源的浪费,而启用慢查询日志有助于识别性能瓶颈。例如,开启慢查询日志的配置如下: ```ini slow_query_log = 1 slow_query_log_file = /var/log/mysql/mysql-slow.log long_query_time = 1 ``` 在实际应用中,还应避免使用临时、使用批量插入以减少事务提交次数,并定期执行 `OPTIMIZE TABLE` 命令来整理碎片。此外,应尽量避免使用锁操作,以减少对并发性能的影响[^2]。 使用 `EXPLAIN` 分析查询执行计划是诊断查询性能问题的重要工具。通过查看执行计划,可以判断是否使用了正确的索引、是否进行了全扫描、是否使用了临时等。例如: ```sql EXPLAIN SELECT id, name FROM users WHERE email = 'test@example.com'; ``` 输出示例: | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | |----|-------------|-------|-------|---------------|---------|---------|-------|------|-------------| | 1 | SIMPLE | users | const | idx_email | idx_email | 767 | const | 1 | Using index | 通过分析 `EXPLAIN` 输出,可以进一步优化查询语句和索引设计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值