转载出处:http://blog.youkuaiyun.com/vanbreaker/article/details/7733476
一 、
Linux的SPI子系统采用主机驱动和外设驱动分离的思想,首先主机SPI控制器是一种平台设备,因此它以platform的方式注册进内核,外设的信息是以boardinfo形式静态定义的,在创建spi_master时,会根据外设的bus_num和主机的bus_num是否相等,来选择是否将该外设挂接在该SPI主控制器下。先看SPI子系统中几个关键的数据结构:
struct spi_master用来描述一个SPI主控制器
- struct spi_master {
- struct device dev;
- s16 bus_num; /*总线编号*/
- u16 num_chipselect;/*支持的外设数量*/
- u16 dma_alignment;
- int (*transfer)(struct spi_device *spi, struct spi_message *mesg);/*用于将消息添加到队列*/
- void (*cleanup)(struct spi_device *spi);
- };
struct spi_device用来描述一个SPI从设备
- struct spi_device {
- struct device dev;
- struct spi_master *master; /*从设备所属的SPI主控器*/
- u32 max_speed_hz; /*最大传输频率*/
- u8 chip_select; /*片选号,用于区别其他从设备*/
- u8 mode; /*传输模式*/
- /*各个mode的定义*/
- #define SPI_CPHA 0x01 /* clock phase */
- #define SPI_CPOL 0x02 /* clock polarity */
- #define SPI_MODE_0 (0|0) /* (original MicroWire) */
- #define SPI_MODE_1 (0|SPI_CPHA)
- #define SPI_MODE_2 (SPI_CPOL|0)
- #define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
- #define SPI_CS_HIGH 0x04 /* chipselect active high? */
- #define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
- #define SPI_3WIRE 0x10 /* SI/SO signals shared */
- #define SPI_LOOP 0x20 /* loopback mode */
- u8 bits_per_word; /*每个字的比特数*/
- int irq; /*所使用的中断*/
- void *controller_state;
- void *controller_data;
- char modalias[32]; /*设备名,在和从设备驱动匹配时会用到*/
- };
struct spi_driver用来描述一个SPI从设备的驱动,它的形式和struct platform_driver是一致的
- struct spi_driver {
- int (*probe)(struct spi_device *spi);
- int (*remove)(struct spi_device *spi);
- void (*shutdown)(struct spi_device *spi);
- int (*suspend)(struct spi_device *spi, pm_message_t mesg);
- int (*resume)(struct spi_device *spi);
- struct device_driver driver;
- };
SPI子系统初始化的第一步就是将SPI总线注册进内核,并且在/sys下创建一个spi_master的类,以后注册的从设备都将挂接在该总线下
- static int __init spi_init(void)
- {
- int status;
- buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
- if (!buf) {
- status = -ENOMEM;
- goto err0;
- }
- status = bus_register(&spi_bus_type);//注册SPI总线
- if (status < 0)
- goto err1;
- status = class_register(&spi_master_class);//注册spi_master类
- if (status < 0)
- goto err2;
- return 0;
- err2:
- bus_unregister(&spi_bus_type);
- err1:
- kfree(buf);
- buf = NULL;
- err0:
- return status;
- }
我们来看spi_bus_type的定义
- struct bus_type spi_bus_type = {
- .name = "spi",
- .dev_attrs = spi_dev_attrs,
- .match = spi_match_device,
- .uevent = spi_uevent,
- .suspend = spi_suspend,
- .resume = spi_resume,
- };
来看挂接在SPI总线下的从设备和从设备驱动是如何匹配的,也就是spi_match_device函数
- static int spi_match_device(struct device *dev, struct device_driver *drv)
- {
- const struct spi_device *spi = to_spi_device(dev);
- return strcmp(spi->modalias, drv->name) == 0;
- }
这里可以看到是将struct device_driver中的name字段与struct spi_device中的modalias字段进行匹配
这里已经完成了SPI子系统初始化的第一步,也就是注册SPI总线,这一步是和平台无关的,第二步是和平台相关的初始化。
二、
上面介绍了SPI子系统中的一些重要数据结构和SPI子系统初始化的第一步,也就是注册SPI总线。这节介绍针对于s3c24xx平台的SPI子系统初始化,在看具体的代码之前,先上一张自己画的图,帮助理清初始化的主要步骤
显然,SPI是一种平台特定的资源,所以它是以platform平台设备的方式注册进内核的,因此它的struct platform_device结构是已经静态定义好了的,现在只待它的struct platform_driver注册,然后和platform_device匹配。
初始化的入口:
- static int __init s3c24xx_spi_init(void)
- {
- return platform_driver_probe(&s3c24xx_spi_driver, s3c24xx_spi_probe);
- }
platform_driver_probe()会调用platform_driver_register()来注册驱动,然后在注册的过程中寻求匹配的platform_device,一旦匹配成功,便会调用probe函数,也就是s3c24xx_spi_probe(),在看这个函数之前,还得介绍几个相关的数据结构。
struct s3c2410_spi_info是一个板级结构,也是在移植时就定义好的,在初始化spi_master时用到,platform_device-->dev-->platform_data会指向这个结构。
- struct s3c2410_spi_info {
- int pin_cs; /* simple gpio cs */
- unsigned int num_cs; /* total chipselects */
- int bus_num;/* bus number to use. */
- void (*gpio_setup)(struct s3c2410_spi_info *spi, int enable);
- void (*set_cs)(struct s3c2410_spi_info *spi, int cs, int pol);
- };
struct s3c24xx_spi用来具体描述s3c24xx平台上一个SPI控制器
- struct s3c24xx_spi {
- /* bitbang has to be first */
- struct spi_bitbang bitbang;
- struct completion done;
- void __iomem *regs;
- int irq;
- int len;
- int count;
- void (*set_cs)(struct s3c2410_spi_info *spi,
- int cs, int pol);
- /* data buffers */
- const unsigned char *tx;
- unsigned char *rx;
- struct clk *clk;
- struct resource *ioarea;
- struct spi_master *master;
- struct spi_device *curdev;
- struct device *dev;
- struct s3c2410_spi_info *pdata;
- };
struct spi_bitbang用于控制实际的数据传输
- struct spi_bitbang {
- struct workqueue_struct *workqueue; /*工作队列*/
- struct work_struct work;
- spinlock_t lock;
- struct list_head queue;
- u8 busy;
- u8 use_dma;
- u8 flags; /* extra spi->mode support */
- struct spi_master *master; /*bitbang所属的master*/
- /*用于设置设备传输时的时钟,字长等*/
- int (*setup_transfer)(struct spi_device *spi,
- struct spi_transfer *t);
- void (*chipselect)(struct spi_device *spi, int is_on);
- #define BITBANG_CS_ACTIVE 1 /* normally nCS, active low */
- #define BITBANG_CS_INACTIVE 0
- /*针对于平台的传输控制函数*/
- int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t);
- /* txrx_word[SPI_MODE_*]() just looks like a shift register */
- u32 (*txrx_word[4])(struct spi_device *spi,
- unsigned nsecs,
- u32 word, u8 bits);
- };
下面来看s3c24xx_spi_probe()函数的实现
- static int __init s3c24xx_spi_probe(struct platform_device *pdev)
- {
- struct s3c2410_spi_info *pdata;
- struct s3c24xx_spi *hw;
- struct spi_master *master;
- struct resource *res;
- int err = 0;
- /*创建spi_master,并将spi_master->private_data指向s3c24xx_spi*/
- master = spi_alloc_master(&pdev->dev, sizeof(struct s3c24xx_spi));
- if (master == NULL) {
- dev_err(&pdev->dev, "No memory for spi_master\n");
- err = -ENOMEM;
- goto err_nomem;
- }
- hw = spi_master_get_devdata(master);//获取s3c24xx_spi
- memset(hw, 0, sizeof(struct s3c24xx_spi));
- hw->master = spi_master_get(master);
- hw->pdata = pdata = pdev->dev.platform_data;
- hw->dev = &pdev->dev;
- if (pdata == NULL) {
- dev_err(&pdev->dev, "No platform data supplied\n");
- err = -ENOENT;
- goto err_no_pdata;
- }
- platform_set_drvdata(pdev, hw);
- init_completion(&hw->done);
- /* setup the master state. */
- /*片选数和SPI主控制器编号是在platform_data中已经定义好了的*/
- master->num_chipselect = hw->pdata->num_cs;
- master->bus_num = pdata->bus_num;
- /* setup the state for the bitbang driver */
- /*设置bitbang的所属master和控制传输的相关函数*/
- hw->bitbang.master = hw->master;
- hw->bitbang.setup_transfer = s3c24xx_spi_setupxfer;
- hw->bitbang.chipselect = s3c24xx_spi_chipsel;
- hw->bitbang.txrx_bufs = s3c24xx_spi_txrx;
- hw->bitbang.master->setup = s3c24xx_spi_setup;
- dev_dbg(hw->dev, "bitbang at %p\n", &hw->bitbang);
- /* find and map our resources */
- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- if (res == NULL) {
- dev_err(&pdev->dev, "Cannot get IORESOURCE_MEM\n");
- err = -ENOENT;
- goto err_no_iores;
- }
- hw->ioarea = request_mem_region(res->start, (res->end - res->start)+1,
- pdev->name);
- if (hw->ioarea == NULL) {
- dev_err(&pdev->dev, "Cannot reserve region\n");
- err = -ENXIO;
- goto err_no_iores;
- }
- /*映射SPI控制寄存器*/
- hw->regs = ioremap(res->start, (res->end - res->start)+1);
- if (hw->regs == NULL) {
- dev_err(&pdev->dev, "Cannot map IO\n");
- err = -ENXIO;
- goto err_no_iomap;
- }
- /*获取中断号*/
- hw->irq = platform_get_irq(pdev, 0);
- if (hw->irq < 0) {
- dev_err(&pdev->dev, "No IRQ specified\n");
- err = -ENOENT;
- goto err_no_irq;
- }
- /*注册中断*/
- err = request_irq(hw->irq, s3c24xx_spi_irq, 0, pdev->name, hw);
- if (err) {
- dev_err(&pdev->dev, "Cannot claim IRQ\n");
- goto err_no_irq;
- }
- hw->clk = clk_get(&pdev->dev, "spi");
- if (IS_ERR(hw->clk)) {
- dev_err(&pdev->dev, "No clock for device\n");
- err = PTR_ERR(hw->clk);
- goto err_no_clk;
- }
- /* setup any gpio we can */
- if (!pdata->set_cs) {
- if (pdata->pin_cs < 0) {
- dev_err(&pdev->dev, "No chipselect pin\n");
- goto err_register;
- }
- err = gpio_request(pdata->pin_cs, dev_name(&pdev->dev));
- if (err) {
- dev_err(&pdev->dev, "Failed to get gpio for cs\n");
- goto err_register;
- }
- hw->set_cs = s3c24xx_spi_gpiocs;//设定片选函数
- gpio_direction_output(pdata->pin_cs, 1);
- } else
- hw->set_cs = pdata->set_cs;
- s3c24xx_spi_initialsetup(hw);
- /* register our spi controller */
- /* 注册主机SPI控制器 */
- err = spi_bitbang_start(&hw->bitbang);
- if (err) {
- dev_err(&pdev->dev, "Failed to register SPI master\n");
- goto err_register;
- }
- return 0;
- err_register:
- if (hw->set_cs == s3c24xx_spi_gpiocs)
- gpio_free(pdata->pin_cs);
- clk_disable(hw->clk);
- clk_put(hw->clk);
- err_no_clk:
- free_irq(hw->irq, hw);
- err_no_irq:
- iounmap(hw->regs);
- int spi_bitbang_start(struct spi_bitbang *bitbang)
- {
- int status;
- if (!bitbang->master || !bitbang->chipselect)
- return -EINVAL;
- /*初始化一个struct work,处理函数为bitbang_work*/
- INIT_WORK(&bitbang->work, bitbang_work);
- spin_lock_init(&bitbang->lock);
- INIT_LIST_HEAD(&bitbang->queue);
- /*检测bitbang中的函数是否都定义了,如果没定义,则默认使用spi_bitbang_xxx*/
- if (!bitbang->master->transfer)
- bitbang->master->transfer = spi_bitbang_transfer;
- if (!bitbang->txrx_bufs) {
- bitbang->use_dma = 0;
- bitbang->txrx_bufs = spi_bitbang_bufs;
- if (!bitbang->master->setup) {
- if (!bitbang->setup_transfer)
- bitbang->setup_transfer =
- spi_bitbang_setup_transfer;
- bitbang->master->setup = spi_bitbang_setup;
- bitbang->master->cleanup = spi_bitbang_cleanup;
- }
- } else if (!bitbang->master->setup)
- return -EINVAL;
- /* this task is the only thing to touch the SPI bits */
- bitbang->busy = 0;
- /*创建bitbang的工作队列*/
- bitbang->workqueue = create_singlethread_workqueue(
- dev_name(bitbang->master->dev.parent));
- if (bitbang->workqueue == NULL) {
- status = -EBUSY;
- goto err1;
- }
- /* driver may get busy before register() returns, especially
- * if someone registered boardinfo for devices
- */
- /*注册spi_master*/
- status = spi_register_master(bitbang->master);
- if (status < 0)
- goto err2;
- return status;
- err2:
- destroy_workqueue(bitbang->workqueue);
- err1:
- return status;
- }
下一个关键函数就是spi_register_master(),用于注册spi_master
- int spi_register_master(struct spi_master *master)
- {
- static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
- struct device *dev = master->dev.parent;
- int status = -ENODEV;
- int dynamic = 0;
- if (!dev)
- return -ENODEV;
- /* even if it's just one always-selected device, there must
- * be at least one chipselect
- */
- if (master->num_chipselect == 0)//片选数不能为0
- return -EINVAL;
- /* convention: dynamically assigned bus IDs count down from the max */
- if (master->bus_num < 0) {
- /* FIXME switch to an IDR based scheme, something like
- * I2C now uses, so we can't run out of "dynamic" IDs
- */
- master->bus_num = atomic_dec_return(&dyn_bus_id);
- dynamic = 1;
- }
- /* register the device, then userspace will see it.
- * registration fails if the bus ID is in use.
- */
- dev_set_name(&master->dev, "spi%u", master->bus_num);
- status = device_add(&master->dev);//添加spi_master设备
- if (status < 0)
- goto done;
- dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
- dynamic ? " (dynamic)" : "");
- /* populate children from any spi device tables */
- scan_boardinfo(master);//遍历板级信息,寻找可以挂接在该spi_master下的从设备
- status = 0;
- done:
- return status;
- }
- static void scan_boardinfo(struct spi_master *master)
- {
- struct boardinfo *bi;
- mutex_lock(&board_lock);
- list_for_each_entry(bi, &board_list, list) {
- struct spi_board_info *chip = bi->board_info;
- unsigned n;
- for (n = bi->n_board_info; n > 0; n--, chip++) {
- if (chip->bus_num != master->bus_num)
- continue;
- /* NOTE: this relies on spi_new_device to
- * issue diagnostics when given bogus inputs
- */
- /*bus_num相等则创建新设备*/
- (void) spi_new_device(master, chip);
- }
- }
- mutex_unlock(&board_lock);
- }
spi_board_info是板级信息,是在移植时就写好的,并且要将其注册
- struct spi_board_info {
- char modalias[32]; /*名字*/
- const void *platform_data;
- void *controller_data;
- int irq; /*中断号*/
- u32 max_speed_hz; /*最高传输速率*/
- u16 bus_num; /*所属的spi_master编号*/
- u16 chip_select; /*片选号*/
- u8 mode; /*传输模式*/
- };
最后一步就是将相应的从设备注册进内核
- struct spi_device *spi_new_device(struct spi_master *master,
- struct spi_board_info *chip)
- {
- struct spi_device *proxy;
- int status;
- /* NOTE: caller did any chip->bus_num checks necessary.
- *
- * Also, unless we change the return value convention to use
- * error-or-pointer (not NULL-or-pointer), troubleshootability
- * suggests syslogged diagnostics are best here (ugh).
- */
- /*创建SPI_device*/
- proxy = spi_alloc_device(master);
- if (!proxy)
- return NULL;
- WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
- /*初始化*/
- proxy->chip_select = chip->chip_select;
- proxy->max_speed_hz = chip->max_speed_hz;
- proxy->mode = chip->mode;
- proxy->irq = chip->irq;
- strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
- proxy->dev.platform_data = (void *) chip->platform_data;
- proxy->controller_data = chip->controller_data;
- proxy->controller_state = NULL;
- /*将新设备添加进内核*/
- status = spi_add_device(proxy);
- if (status < 0) {
- spi_dev_put(proxy);
- return NULL;
- }
- return proxy;
- }
三、
最后以spidev设备驱动为例,来阐述SPI数据传输的过程。spidev是内核中一个通用的设备驱动,我们注册的从设备都可以使用该驱动,只需在注册时将从设备的modalias字段设置为"spidev",这样才能和spidev驱动匹配成功。我们要传输的数据有时需要分为一段一段的(比如先发送,后读取,就需要两个字段),每个字段都被封装成一个transfer,N个transfer可以被添加到message中,作为一个消息包进行传输。当用户发出传输数据的请求时,message并不会立刻传输到从设备,而是由之前定义的transfer()函数将message放入一个等待队列中,这些message会以FIFO的方式有workqueue调度进行传输,这样能够避免SPI从设备同一时间对主SPI控制器的竞争。和之前一样,还是习惯先画一张图来描述数据传输的主要过程。
在使用spidev设备驱动时,需要先初始化spidev. spidev是以字符设备的形式注册进内核的。
- static int __init spidev_init(void)
- {
- int status;
- /* Claim our 256 reserved device numbers. Then register a class
- * that will key udev/mdev to add/remove /dev nodes. Last, register
- * the driver which manages those device numbers.
- */
- BUILD_BUG_ON(N_SPI_MINORS > 256);
- /*将spidev作为字符设备注册*/
- status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
- if (status < 0)
- return status;
- /*创建spidev类*/
- spidev_class = class_create(THIS_MODULE, "spidev");
- if (IS_ERR(spidev_class)) {
- unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
- return PTR_ERR(spidev_class);
- }
- /*注册spidev的driver,可与modalias字段为"spidev"的spi_device匹配*/
- status = spi_register_driver(&spidev_spi);
- if (status < 0) {
- class_destroy(spidev_class);
- unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
- }
- return status;
- }
与相应的从设备匹配成功后,则调用spidev中的probe函数
- static int spidev_probe(struct spi_device *spi)
- {
- struct spidev_data *spidev;
- int status;
- unsigned long minor;
- /* Allocate driver data */
- spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
- if (!spidev)
- return -ENOMEM;
- /* Initialize the driver data */
- spidev->spi = spi;//设定spi
- spin_lock_init(&spidev->spi_lock);
- mutex_init(&spidev->buf_lock);
- INIT_LIST_HEAD(&spidev->device_entry);
- /* If we can allocate a minor number, hook up this device.
- * Reusing minors is fine so long as udev or mdev is working.
- */
- mutex_lock(&device_list_lock);
- minor = find_first_zero_bit(minors, N_SPI_MINORS);//寻找没被占用的次设备号
- if (minor < N_SPI_MINORS) {
- struct device *dev;
- /*计算设备号*/
- spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
- /*在spidev_class下创建设备*/
- dev = device_create(spidev_class, &spi->dev, spidev->devt,
- spidev, "spidev%d.%d",
- spi->master->bus_num, spi->chip_select);
- status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
- } else {
- dev_dbg(&spi->dev, "no minor number available!\n");
- status = -ENODEV;
- }
- if (status == 0) {
- set_bit(minor, minors);//将minors的相应位置位,表示该位对应的次设备号已被占用
- list_add(&spidev->device_entry, &device_list);//将创建的spidev添加到device_list
- }
- mutex_unlock(&device_list_lock);
- if (status == 0)
- spi_set_drvdata(spi, spidev);
- else
- kfree(spidev);
- return status;
- }
然后就可以利用spidev模块提供的接口来实现主从设备之间的数据传输了。我们以spidev_write()函数为例来分析数据传输的过程,实际上spidev_read()和其是差不多的,只是前面的一些步骤不一样,可以参照上图。
- static ssize_t
- spidev_write(struct file *filp, const char __user *buf,
- size_t count, loff_t *f_pos)
- {
- struct spidev_data *spidev;
- ssize_t status = 0;
- unsigned long missing;
- /* chipselect only toggles at start or end of operation */
- if (count > bufsiz)
- return -EMSGSIZE;
- spidev = filp->private_data;
- mutex_lock(&spidev->buf_lock);
- //将用户要发送的数据拷贝到spidev->buffer
- missing = copy_from_user(spidev->buffer, buf, count);
- if (missing == 0) {//全部拷贝成功,则调用spidev_sysn_write()
- status = spidev_sync_write(spidev, count);
- } else
- status = -EFAULT;
- mutex_unlock(&spidev->buf_lock);
- return status;
- }
- static inline ssize_t
- spidev_sync_write(struct spidev_data *spidev, size_t len)
- {
- struct spi_transfer t = {//设置传输字段
- .tx_buf = spidev->buffer,
- .len = len,
- };
- struct spi_message m;//创建message
- spi_message_init(&m);
- spi_message_add_tail(&t, &m);//将transfer添加到message中
- return spidev_sync(spidev, &m);
- }
我们来看看struct spi_transfer和struct spi_message是如何定义的
- struct spi_transfer {
- /* it's ok if tx_buf == rx_buf (right?)
- * for MicroWire, one buffer must be null
- * buffers must work with dma_*map_single() calls, unless
- * spi_message.is_dma_mapped reports a pre-existing mapping
- */
- const void *tx_buf;//发送缓冲区
- void *rx_buf;//接收缓冲区
- unsigned len; //传输数据的长度
- dma_addr_t tx_dma;
- dma_addr_t rx_dma;
- unsigned cs_change:1; //该位如果为1,则表示当该transfer传输完后,改变片选信号
- u8 bits_per_word;//字比特数
- u16 delay_usecs; //传输后的延时
- u32 speed_hz; //指定的时钟
- struct list_head transfer_list;//用于将该transfer链入message
- };
- struct spi_message {
- struct list_head transfers;//用于链接spi_transfer
- struct spi_device *spi; //指向目的从设备
- unsigned is_dma_mapped:1;
- /* REVISIT: we might want a flag affecting the behavior of the
- * last transfer ... allowing things like "read 16 bit length L"
- * immediately followed by "read L bytes". Basically imposing
- * a specific message scheduling algorithm.
- *
- * Some controller drivers (message-at-a-time queue processing)
- * could provide that as their default scheduling algorithm. But
- * others (with multi-message pipelines) could need a flag to
- * tell them about such special cases.
- */
- /* completion is reported through a callback */
- void (*complete)(void *context);//用于异步传输完成时调用的回调函数
- void *context; //回调函数的参数
- unsigned actual_length; //实际传输的长度
- int status;
- /* for optional use by whatever driver currently owns the
- * spi_message ... between calls to spi_async and then later
- * complete(), that's the spi_master controller driver.
- */
- struct list_head queue; //用于将该message链入bitbang等待队列
- void *state;
- };
继续跟踪源码,进入spidev_sync(),从这一步开始,read和write就完全一样了
- <span style="font-size:12px;">static ssize_t
- spidev_sync(struct spidev_data *spidev, struct spi_message *message)
- {
- DECLARE_COMPLETION_ONSTACK(done);
- int status;
- message->complete = spidev_complete;//设置回调函数
- message->context = &done;
- spin_lock_irq(&spidev->spi_lock);
- if (spidev->spi == NULL)
- status = -ESHUTDOWN;
- else
- status = spi_async(spidev->spi, message);//调用spi核心层的函数spi_async()
- spin_unlock_irq(&spidev->spi_lock);
- if (status == 0) {
- wait_for_completion(&done);
- status = message->status;
- if (status == 0)
- status = message->actual_length;
- }
- return status;
- }</span>
- static inline int
- spi_async(struct spi_device *spi, struct spi_message *message)
- {
- message->spi = spi;
- /*调用master的transfer函数将message放入等待队列*/
- return spi->master->transfer(spi, message);
- }
s3c24xx平台下的transfer函数是在bitbang_start()函数中定义的,为bitbang_transfer()
- int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
- {
- struct spi_bitbang *bitbang;
- unsigned long flags;
- int status = 0;
- m->actual_length = 0;
- m->status = -EINPROGRESS;
- bitbang = spi_master_get_devdata(spi->master);
- spin_lock_irqsave(&bitbang->lock, flags);
- if (!spi->max_speed_hz)
- status = -ENETDOWN;
- else {
- list_add_tail(&m->queue, &bitbang->queue);//将message添加到bitbang的等待队列
- queue_work(bitbang->workqueue, &bitbang->work);//调度运行work
- }
- spin_unlock_irqrestore(&bitbang->lock, flags);
- return status;
- }
这里可以看到transfer函数不负责实际的数据传输,而是将message添加到等待队列中。同样在spi_bitbang_start()中,有这样一个定义INIT_WORK(&bitbang->work, bitbang_work);因此bitbang_work()函数会被调度运行,类似于底半部机制
- static void bitbang_work(struct work_struct *work)
- {
- struct spi_bitbang *bitbang =
- container_of(work, struct spi_bitbang, work);//获取bitbang
- unsigned long flags;
- spin_lock_irqsave(&bitbang->lock, flags);
- bitbang->busy = 1;
- while (!list_empty(&bitbang->queue)) {//等待队列不为空
- struct spi_message *m;
- struct spi_device *spi;
- unsigned nsecs;
- struct spi_transfer *t = NULL;
- unsigned tmp;
- unsigned cs_change;
- int status;
- int (*setup_transfer)(struct spi_device *,
- struct spi_transfer *);
- /*取出等待队列中的的第一个message*/
- m = container_of(bitbang->queue.next, struct spi_message,
- queue);
- list_del_init(&m->queue);//将message从队列中删除
- spin_unlock_irqrestore(&bitbang->lock, flags);
- /* FIXME this is made-up ... the correct value is known to
- * word-at-a-time bitbang code, and presumably chipselect()
- * should enforce these requirements too?
- */
- nsecs = 100;
- spi = m->spi;
- tmp = 0;
- cs_change = 1;
- status = 0;
- setup_transfer = NULL;
- /*遍历message中的所有传输字段,逐一进行传输*/
- list_for_each_entry (t, &m->transfers, transfer_list) {
- /* override or restore speed and wordsize */
- if (t->speed_hz || t->bits_per_word) {
- setup_transfer = bitbang->setup_transfer;
- if (!setup_transfer) {
- status = -ENOPROTOOPT;
- break;
- }
- }
- /*调用setup_transfer根据transfer中的信息进行时钟、字比特数的设定*/
- if (setup_transfer) {
- status = setup_transfer(spi, t);
- if (status < 0)
- break;
- }
- /* set up default clock polarity, and activate chip;
- * this implicitly updates clock and spi modes as
- * previously recorded for this device via setup().
- * (and also deselects any other chip that might be
- * selected ...)
- */
- if (cs_change) {//使能外设的片选
- bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
- ndelay(nsecs);
- }
- cs_change = t->cs_change;//这里确定进行了这个字段的传输后是否要改变片选状态
- if (!t->tx_buf && !t->rx_buf && t->len) {
- status = -EINVAL;
- break;
- }
- /* transfer data. the lower level code handles any
- * new dma mappings it needs. our caller always gave
- * us dma-safe buffers.
- */
- if (t->len) {
- /* REVISIT dma API still needs a designated
- * DMA_ADDR_INVALID; ~0 might be better.
- */
- if (!m->is_dma_mapped)
- t->rx_dma = t->tx_dma = 0;
- /*调用针对于平台的传输函数txrx_bufs*/
- status = bitbang->txrx_bufs(spi, t);
- }
- if (status > 0)
- m->actual_length += status;
- if (status != t->len) {
- /* always report some kind of error */
- if (status >= 0)
- status = -EREMOTEIO;
- break;
- }
- status = 0;
- /* protocol tweaks before next transfer */
- /*如果要求在传输完一个字段后进行delay,则进行delay*/
- if (t->delay_usecs)
- udelay(t->delay_usecs);
- if (!cs_change)
- continue;
- /*最后一个字段传输完毕了,则跳出循环*/
- if (t->transfer_list.next == &m->transfers)
- break;
- /* sometimes a short mid-message deselect of the chip
- * may be needed to terminate a mode or command
- */
- ndelay(nsecs);
- bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
- ndelay(nsecs);
- }
- m->status = status;
- m->complete(m->context);
- /* restore speed and wordsize */
- if (setup_transfer)
- setup_transfer(spi, NULL);
- /* normally deactivate chipselect ... unless no error and
- * cs_change has hinted that the next message will probably
- * be for this chip too.
- */
- if (!(status == 0 && cs_change)) {
- ndelay(nsecs);
- bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
- ndelay(nsecs);
- }
- spin_lock_irqsave(&bitbang->lock, flags);
- }
- bitbang->busy = 0;
- spin_unlock_irqrestore(&bitbang->lock, flags);
- }
只要bitbang->queue等待队列不为空,就表示相应的SPI主控制器上还有传输任务没有完成,因此bitbang_work()会被不断地调度执行。 bitbang_work()中的工作主要是两个循环,外循环遍历等待队列中的message,内循环遍历message中的transfer,在bitbang_work()中,传输总是以transfer为单位的。当选定了一个transfer后,便会调用transfer_txrx()函数,进行实际的数据传输,显然这个函数是针对于平台的SPI控制器而实现的,在s3c24xx平台中,该函数为s3c24xx_spi_txrx();
- static int s3c24xx_spi_txrx(struct spi_device *spi, struct spi_transfer *t)
- {
- struct s3c24xx_spi *hw = to_hw(spi);
- dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
- t->tx_buf, t->rx_buf, t->len);
- hw->tx = t->tx_buf;//获取发送缓冲区
- hw->rx = t->rx_buf;//获取读取缓存区
- hw->len = t->len; //获取数据长度
- hw->count = 0;
- init_completion(&hw->done);//初始化完成量
- /* send the first byte */
- /*只发送第一个字节,其他的在中断中发送(读取)*/
- writeb(hw_txbyte(hw, 0), hw->regs + S3C2410_SPTDAT);
- wait_for_completion(&hw->done);
- return hw->count;
- }
- static inline unsigned int hw_txbyte(struct s3c24xx_spi *hw, int count)
- {
- /*如果tx不为空,也就是说当前是从主机向从机发送数据,则直接将tx[count]发送过去,
- 如果tx为空,也就是说当前是从从机向主机发送数据,则向从机写入0*/
- return hw->tx ? hw->tx[count] : 0;
- }
负责SPI数据传输的中断函数:
- static irqreturn_t s3c24xx_spi_irq(int irq, void *dev)
- {
- struct s3c24xx_spi *hw = dev;
- unsigned int spsta = readb(hw->regs + S3C2410_SPSTA);
- unsigned int count = hw->count;
- /*冲突检测*/
- if (spsta & S3C2410_SPSTA_DCOL) {
- dev_dbg(hw->dev, "data-collision\n");
- complete(&hw->done);
- goto irq_done;
- }
- /*设备忙检测*/
- if (!(spsta & S3C2410_SPSTA_READY)) {
- dev_dbg(hw->dev, "spi not ready for tx?\n");
- complete(&hw->done);
- goto irq_done;
- }
- hw->count++;
- if (hw->rx)//读取数据到缓冲区
- hw->rx[count] = readb(hw->regs + S3C2410_SPRDAT);
- count++;
- if (count < hw->len)//向从机写入数据
- writeb(hw_txbyte(hw, count), hw->regs + S3C2410_SPTDAT);
- else//count == len,一个字段发送完成,唤醒完成量
- complete(&hw->done);
- irq_done:
- return IRQ_HANDLED;
- }
这里可以看到一点,即使tx为空,也就是说用户申请的是从从设备读取数据,也要不断地向从设备写入数据,只不过写入从设备的是无效数据(0),这样做得目的是为了维持SPI总线上的时钟。至此,SPI框架已分析完毕。