volatile关键字解析
并发编程中的三个概念
1.原子性
原子性:即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。
2.可见性
可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。
举个简单的例子,看下面这段代码:
//线程1执行的代码
int i = 0;
i = 10;
//线程2执行的代码
j = i;
假若执行线程1的是CPU1,执行线程2的是CPU2。由上面的分析可知,当线程1执行 i =10这句时,会先把i的初始值加载到CPU1的高速缓存中,然后赋值为10,那么在CPU1的高速缓存当中i的值变为10了,却没有立即写入到主存当中。
此时线程2执行 j = i,它会先去主存读取i的值并加载到CPU2的缓存当中,注意此时内存当中i的值还是0,那么就会使得j的值为0,而不是10.
这就是可见性问题,线程1对变量i修改了之后,线程2没有立即看到线程1修改的值。
3.有序性
有序性:即程序执行的顺序按照代码的先后顺序执行。举个简单的例子,看下面这段代码:
int i = 0;
boolean flag = false;
i = 1; //语句1
flag = true; //语句2
上面代码定义了一个int型变量,定义了一个boolean类型变量,然后分别对两个变量进行赋值操作。从代码顺序上看,语句1是在语句2前面的,那么JVM在真正执行这段代码的时候会保证语句1一定会在语句2前面执行吗?不一定,为什么呢?这里可能会发生指令重排序(Instruction Reorder)。
虽然重排序不会影响单个线程内程序执行的结果,但是多线程呢?下面看一个例子:
//线程1:
context = loadContext(); //语句1
inited = true; //语句2
//线程2:
while(!inited ){
sleep()
}
doSomethingwithconfig(context);
上面代码中,由于语句1和语句2没有数据依赖性,因此可能会被重排序。假如发生了重排序,在线程1执行过程中先执行语句2,而此是线程2会以为初始化工作已经完成,那么就会跳出while循环,去执行doSomethingwithconfig(context)方法,而此时context并没有被初始化,就会导致程序出错。
从上面可以看出,指令重排序不会影响单个线程的执行,但是会影响到线程并发执行的正确性。
也就是说,要想并发程序正确地执行,必须要保证原子性、可见性以及有序性。只要有一个没有被保证,就有可能会导致程序运行不正确。
剖析volatile关键字
1.volatile关键字的两层语义
一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:
1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。
2)禁止进行指令重排序。
2.volatile保证原子性吗?
从上面知道volatile关键字保证了操作的可见性,但是volatile能保证对变量的操作是原子性吗?
下面看一个例子:
public class Test {
public volatile int inc = 0;
public void increase() {
inc++;
}
public static void main(String[] args) {
final Test test = new Test();
for(int i=0;i<10;i++){
new Thread(){
public void run() {
for(int j=0;j<1000;j++)
test.increase();
};
}.start();
}
while(Thread.activeCount()>1) //保证前面的线程都执行完
Thread.yield();
System.out.println(test.inc);
}
}
自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:
假如某个时刻变量inc的值为10,
线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;
然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。
然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。
那么两个线程分别进行了一次自增操作后,inc只增加了1
根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。
3.volatile能保证有序性吗?
在前面提到volatile关键字能禁止指令重排序,所以volatile能在一定程度上保证有序性。
volatile关键字禁止指令重排序有两层意思:
1)当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可见;在其后面的操作肯定还没有进行;
2)在进行指令优化时,不能将在对volatile变量访问的语句放在其后面执行,也不能把volatile变量后面的语句放到其前面执行。
前面举的一个例子:
//线程1:
context = loadContext(); //语句1
inited = true; //语句2
//线程2:
while(!inited ){
sleep()
}
doSomethingwithconfig(context);
前面举这个例子的时候,提到有可能语句2会在语句1之前执行,那么久可能导致context还没被初始化,而线程2中就使用未初始化的context去进行操作,导致程序出错。
这里如果用volatile关键字对inited变量进行修饰,就不会出现这种问题了,因为当执行到语句2时,必定能保证context已经初始化完毕。
4.volatile的原理和实现机制
前面讲述了源于volatile关键字的一些使用,下面我们来探讨一下volatile到底如何保证可见性和禁止指令重排序的。
下面这段话摘自《深入理解Java虚拟机》:
“观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现,加入volatile关键字时,会多出一个lock前缀指令”
lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:
1)它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;
2)它会强制将对缓存的修改操作立即写入主存;
3)如果是写操作,它会导致其他CPU中对应的缓存行无效。
使用volatile关键字的场景
synchronized关键字是防止多个线程同时执行一段代码,那么就会很影响程序执行效率,而volatile关键字在某些情况下性能要优于synchronized,但是要注意volatile关键字是无法替代synchronized关键字的,因为volatile关键字无法保证操作的原子性。通常来说,使用volatile必须具备以下2个条件:
1)对变量的写操作不依赖于当前值
2)该变量没有包含在具有其他变量的不变式中
不变式,比如年龄必须大于等于零,高大于低,余额必须大于多少等。
该变量没有包含在具有其他变量的不变式中,也就是说,不同的volatile变量之间,不能互相依赖。只有在状态真正独立于程序内其他内容时才能使用volatile)
上面的2个条件需要保证操作是原子性操作,才能保证使用volatile关键字的程序在并发时能够正确执行。