二叉树 | 层次遍历(广度优先)

本文介绍了一种基于队列的二叉树层次遍历算法,详细解释了如何使用队列来实现对二叉树的分层访问。从根节点开始,通过控制队列长度来确定每层遍历的节点数,最终实现对整棵树的层次访问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二叉树深度优先遍历的非递归做法是用stack实现,而层次遍历多是使用队列实现。

主要思路:

从根结点开始,未访问的结点入队,访问后则出队,并将其左右子结点入队,直到叶子结点结束.
分层访问,即通过队列长度控制每层遍历访问的节点数.如第一层访问一个节点后,queue此时为第二层的节点,queue.length为2,第二层访问两个节点后,queue此时为第三层的节点…

function BFS(root){
		let result = [];
		let queue = [];
		if(root){
			result.push(root);
			queue.push(root);
		}

		while(queue.length){
			// 每一层的节点数
			let level = queue.length
			// 遍历该层 
			for(let i=0;i<level;i++){
				// 当前节点出队
				let cur = queue.shift();
			 	// 出队结点的左右节点入队
			 	cur.left ? queue.push(cur.left):'';
			 	cur.right? queue.push(cur.right):'',
			 	result.push(cur.val);
			}
		}
		return result;
	}

比如下面这棵树:

  1. 根节点入队
  2. 开始while循环,遍历第一层(只有根节点),打印1,1出队,2和3入队。 此时队列:2 3
  3. 遍历第二层,打印2、2出队、4和5入队,此时队列:3 4 5
  4. 打印3、3出队,6入队,此时队列:4 5 6
  5. 遍历第三层(4 5 6),依次类推....
### 图的广度优先遍历二叉树层次遍历的关系 #### 相似性分析 图的广度优先遍历(BFS)和二叉树层次遍历在本质上都属于一种基于队列的数据结构实现的算法。两者的核心思想是从起始点出发,逐层访问相邻节点或子节点,直到所有可达节点都被访问完毕。这一过程体现了相同的逻辑框架:先访问当前层的所有节点,再依次访问下一层的节点[^1]。 在具体实现上,无论是图还是二叉树,都需要借助一个辅助队列来存储待访问的节点。对于图而言,由于可能存在环路或者重复连接的情况,通常还需要额外设置一个布尔型数组 `visited` 来记录哪些节点已经访问过,从而避免无限循环;而对于二叉树来说,则不存在这样的问题,因为每棵二叉树中的节点至多有两个孩子节点,并且不会形成回路[^4]。 以下是两者的共同特点总结: - **按层访问**:均采用自顶层向下的方式逐一扫描每一层上的全部元素; - **依赖队列机制**:利用先进先出(FIFO)原则管理待处理项列表; - **终止条件一致**:当队列为空时表示已完成整个结构体的遍历操作。 #### 实现方法对比 ##### 1. 图的广度优先遍历 (Graph BFS) 下面给出了一种标准C++版本的图BFS伪代码表示: ```cpp #include <queue> using namespace std; vector<vector<int>> adj; // 邻接表形式表示图形 bool vis[adj.size()]; // 访问标志位初始化为false void bfs(int startNode){ queue<int> q; memset(vis, false, sizeof(vis)); // 清零已访问标记 q.push(startNode); vis[startNode]=true; while (!q.empty()){ int u=q.front();q.pop(); cout<<u<<" "; // 输出当前结点 for(auto &v : adj[u]){ if(!vis[v]){ q.push(v); vis[v]=true;// 设置新加入队列的顶点已被访问 } } } } ``` 此函数接受参数`startNode`作为起点执行完整的BFS流程[^3]。 ##### 2. 二叉树层次遍历(Binary Tree Level Order Traversal) 同样提供一段Python风格的例子用于展示如何完成一颗完全二叉树的高度有序打印功能: ```python from collections import deque class TreeNode: def __init__(self,val): self.val=val self.left=None self.right=None def level_order_traversal(root): result=[] if not root:return [] que=deque([root]) while que: size=len(que) temp_level_values=[] for _ in range(size): node=que.popleft() if node is None:continue temp_level_values.append(node.val) if node.left:que.append(node.left) if node.right:que.append(node.right) result.extend(temp_level_values) return result ``` 这里定义了一个简单的类`TreeNode`,用来构建测试用例所需的样本数据集。随后通过双端队列(deque)模拟FIFO行为,在每次迭代过程中动态调整容器内的成员构成直至结束为止[^2]。 --- ### 结论 综上所述,尽管图的广度优先搜索(BFS)以及二叉树层次遍历(Level-order traversal)分别适用于不同类型的抽象数据类型之上,但是它们共享着极为类似的运作机理—即依靠队列的支持逐步展开邻近区域的信息采集工作流。因此可以说前者可以看作后者的一个泛化推广版实例应用案例之一而已!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值