HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。下面就来分析HashMap的存取。
1、定义
- public class HashMap<K,V>
- extends AbstractMap<K,V>
- implements Map<K,V>, Cloneable, Serializable
2、构造函数
HashMap提供了三个构造函数:
HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。
HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。
HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap。
在这里提到了两个参数:初始容量,加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。
HashMap是一种支持快速存取的数据结构,要了解它的性能必须要了解它的数据结构。
3、数据结构
我们知道在Java中最常用的两种结构是 数组和模拟指针(引用) ,几乎所有的数据结构都可以利用这两种来组合实现,HashMap也是如此。实际上HashMap是一个“链表散列”,如下是它数据结构:
- public HashMap(int initialCapacity, float loadFactor) {
- if (initialCapacity < 0)
- throw new IllegalArgumentException("Illegal initial capacity: " +
- initialCapacity);
- if (initialCapacity > MAXIMUM_CAPACITY)
- initialCapacity = MAXIMUM_CAPACITY;
- if (loadFactor <= 0 || Float.isNaN(loadFactor))
- throw new IllegalArgumentException("Illegal load factor: " +
- loadFactor);
- this.loadFactor = loadFactor;
- this.threshold = tableSizeFor(initialCapacity);
- }
- static class Node<K,V> implements Map.Entry<K,V> {
- final int hash;
- final K key;
- V value;
- Node<K,V> next;
- Node(int hash, K key, V value, Node<K,V> next) {
- this.hash = hash;
- this.key = key;
- this.value = value;
- this.next = next;
- }
- public final K getKey() { return key; }
- public final V getValue() { return value; }
- public final String toString() { return key + "=" + value; }
- public final int hashCode() {
- return Objects.hashCode(key) ^ Objects.hashCode(value);
- }
- public final V setValue(V newValue) {
- V oldValue = value;
- value = newValue;
- return oldValue;
- }
- public final boolean equals(Object o) {
- if (o == this)
- return true;
- if (o instanceof Map.Entry) {
- Map.Entry<?,?> e = (Map.Entry<?,?>)o;
- if (Objects.equals(key, e.getKey()) &&
- Objects.equals(value, e.getValue()))
- return true;
- }
- return false;
- }
- }
其中Entry为HashMap的内部类,它包含了键key、值value、下一个节点next,以及hash值,这是非常重要的,正是由于Entry才构成了table数组的项为链表。
上面简单分析了HashMap的数据结构,下面将探讨HashMap是如何实现快速存取的。
4、元素的添加
- public V put(K key, V value) {
- return putVal(hash(key), key, value, false, true);
- }
- /**
- * Implements Map.put and related methods
- *
- * @param hash hash for key
- * @param key the key
- * @param value the value to put
- * @param onlyIfAbsent if true, don't change existing value
- * @param evict if false, the table is in creation mode.
- * @return previous value, or null if none
- */
- final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
- boolean evict) {
- Node<K,V>[] tab; Node<K,V> p; int n, i;
- if ((tab = table) == null || (n = tab.length) == 0)
- n = (tab = resize()).length; //获取 table 的长度
- if ((p = tab[i = (n - 1) & hash]) == null) //表示的是(n - 1) & hash 获取table 下标
- tab[i] = newNode(hash, key, value, null); //如果不存在就创建一个 直接保存
- else { //表示的是存在
- Node<K,V> e; K k;
- if (p.hash == hash && //表示的是第一个就是
- ((k = p.key) == key || (key != null && key.equals(k))))
- e = p; //如果是键 和 hash 相同
- else if (p instanceof TreeNode) //表示的是 treeMap
- e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
- else {
- for (int binCount = 0; ; ++binCount) {
- if ((e = p.next) == null) { //表示的是找到最后一个还没有找到我们就创建一个
- p.next = newNode(hash, key, value, null);
- if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
- treeifyBin(tab, hash);
- break;
- }
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k)))) //表示的是找到了
- break;
- p = e;
- }
- }
- if (e != null) { // existing mapping for key 表示的是存在这个 node 我们就保留
- V oldValue = e.value;
- if (!onlyIfAbsent || oldValue == null)
- e.value = value;
- afterNodeAccess(e);
- return oldValue;
- }
- }
- ++modCount;
- if (++size > threshold)
- resize();
- afterNodeInsertion(evict);
- return null;
- }
- public V put(K key, V value) {
- //当key为null,调用putForNullKey方法,保存null与table第一个位置中,这是HashMap允许为null的原因
- if (key == null)
- return putForNullKey(value);
- //计算key的hash值
- int hash = hash(key.hashCode()); ------(1)
- //计算key hash 值在 table 数组中的位置
- int i = indexFor(hash, table.length); ------(2)
- //从i出开始迭代 e,找到 key 保存的位置
- for (Entry<K, V> e = table[i]; e != null; e = e.next) {
- Object k;
- //判断该条链上是否有hash值相同的(key相同)
- //若存在相同,则直接覆盖value,返回旧value
- if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
- V oldValue = e.value; //旧值 = 新值
- e.value = value;
- e.recordAccess(this);
- return oldValue; //返回旧值
- }
- }
- //修改次数增加1
- modCount++;
- //将key、value添加至i位置处
- addEntry(hash, key, value, i);
- return null;
- }
通过源码我们可以清晰看到HashMap保存数据的过程为:首先判断key是否为null,若为null,则直接调用putForNullKey方法。若不为空则先计算key的hash值,然后根据hash值搜索在table数组中的索引位置,如果table数组在该位置处有元素,则通过比较是否存在相同的key,若存在则覆盖原来key的value,否则将该元素保存在链头(最先保存的元素放在链尾)。若table在该处没有元素,则直接保存。这个过程看似比较简单,其实深有内幕。有如下几点:
1、 先看迭代处。此处迭代原因就是为了防止存在相同的key值,若发现两个hash值(key)相同时,HashMap的处理方式是用新value替换旧value,这里并没有处理key,这就解释了HashMap中没有两个相同的key。
2、 在看(1)、(2)处。这里是HashMap的精华所在。首先是hash方法,该方法为一个纯粹的数学计算,就是计算h的hash值。
- static final int hash(Object key) {
- int h;
- return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
- }
- static int indexFor(int h, int length) {
- return h & (length-1);
- }
HashMap的底层数组长度总是2的n次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length - 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。
我们回到indexFor方法,该方法仅有一条语句:h&(length - 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布table数据和充分利用空间。
这里我们假设length为16(2^n)和15,h为5、6、7。

当n=15时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看0-15。

- void addEntry(int hash, K key, V value, int bucketIndex) {
- //获取bucketIndex处的Entry
- Entry<K, V> e = table[bucketIndex];
- //将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry
- table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
- //若HashMap中元素的个数超过极限了,则容量扩大两倍
- if (size++ >= threshold)
- resize(2 * table.length);
- }
这个方法中有两点需要注意:
一是链的产生。这是一个非常优雅的设计。系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。
二、扩容问题。
随着HashMap中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响HashMap的速度,为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理。该临界点在当HashMap中元素的数量等于table数组长度*加载因子。但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新table数组中的位置并进行复制处理。所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。
5、读取元素
- public V get(Object key) {
- Node<K,V> e;
- return (e = getNode(hash(key), key)) == null ? null : e.value;
- }
- final Node<K,V> getNode(int hash, Object key) {
- Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
- if ((tab = table) != null && (n = tab.length) > 0 &&
- (first = tab[(n - 1) & hash]) != null) {
- if (first.hash == hash && // always check first node
- ((k = first.key) == key || (key != null && key.equals(k))))
- return first;
- if ((e = first.next) != null) {
- if (first instanceof TreeNode)
- return ((TreeNode<K,V>)first).getTreeNode(hash, key);
- do {
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k))))
- return e;
- } while ((e = e.next) != null);
- }
- }
- return null;
- }