#307. 最小m段和问题

博客围绕给定n个整数序列,将其分割为m段,使m段子序列和的最大值最小的问题展开。介绍了输入输出要求、时间和数据范围,给出解题思路,用dp[i][j]存储相关值,分j=1和j>1两种情况讨论,最后给出AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】:

给定n 个整数组成的序列,现在要求将序列分割为m 段,每段子序列中的数在原序列 中连续排列。如何分割才能使这m 段子序列的和的最大值达到最小?

给定n 个整数组成的序列,编程计算该序列的最优m 段分割,使m 段子序列的和的最大值达到最小。

【输入描述】:

输入文件的第1 行中有2 个正整数n 和m。正整数n 是序列的长度;正整数m 是分割的断数。

接下来的一行中有n 个整数。

【输出描述】:

一个数就是计算出的m 段子序列的和的最大值的最小值。

【样例输入】:

9 3
9 8 7 6 5 4 3 2 1

【样例输出】:

17

【时间限制、数据范围及描述】:

时间:1s 空间:128M

n<=100, m<=100

【解题思路】:

用dp[i][j]存储长度为i,分j段后其子序列和的最大值的最小值,那么它由两部分构成:

当j=1时,dp[i][1]表示的是长为i的整个序列的和;

当j>1时,dp[i][j] = MIN(for(k=1; k<=i; k++)MAX(dp[k][j-1], dp[i][1] - dp[k][1]));

这当中k表示的是分段的最后一段子序列的开始下标,所以dp[k][j-1]是前面j-1段子序列和的最大值的最小值,dp[i][1] - dp[k][1]是最后一段子序列的和。所以取这两段中的最大值,在k值变化过程中取得到的最小值就OK了。

【AC代码】:

#include<bits/stdc++.h>
#define M(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define Mod 19650827
using namespace std;
inline void read(int &x){
    char ch=getchar(),c=ch;
	x=0;
    while(ch<'0' || ch>'9'){
    	 c=ch;
		 ch=getchar();
	}
    while(ch>='0' && ch<='9'){
    	x=(x<<1)+(x<<3)+ch-'0';
		ch=getchar();
	}
    if(c=='-')x=-x;
} 


int dp[105][105],a[105];
int i,j,k,temp,min1 ;
int n,m;
 
int main() {
	read(n),read(m);
	for(i=1;i<=n;i++)read(a[i]);
	for(i=1;i<=n;i++)dp[i][1]=dp[i-1][1]+a[i];
	for(i=1;i<=n;i++){
		for(j=2;j<=m;j++){
			min1=1<<30;			
			for(k=1;k<=i;k++){
				temp=max(dp[k][j-1],dp[i][1]-dp[k][1]) ;
				if(temp<min1)min1=temp ;
			}
			dp[i][j]=min1 ;
		}
	}
	printf("%d",dp[n][m]);
	return 0 ;
}
clc; clear; % ============================== % 1. 加载SPD数据 % ============================== wavelength_range = (360:830)&#39;; spd_uniform = zeros(size(wavelength_range)); % 提供的SPD数据 (380nm-780nm) spd_data = [ 380, 0.021608529; 381, 0.018694264; 382, 0.017377406; 383, 0.030297232; 384, 0.029682046; 385, 0.036093368; 386, 0.019471422; 387, 0.019676484; 388, 0.030977207; 389, 0.022569051; 390, 0.03220758; 391, 0.026130897; 392, 0.017949501; 393, 0.015574937; 394, 0.021856682; 395, 0.024339125; 396, 0.033405558; 397, 0.03796032; 398, 0.04034558; 399, 0.053999168; 400, 0.062936024; 401, 0.08373005; 402, 0.113050808; 403, 0.13985997; 404, 0.197109142; 405, 0.249658697; 406, 0.327715769; 407, 0.429331695; 408, 0.540649101; 409, 0.703401456; 410, 0.883055934; 411, 1.078100276; 412, 1.348361506; 413, 1.611840104; 414, 1.953801177; 415, 2.307667527; 416, 2.667705968; 417, 3.203668957; 418, 3.759319255; 419, 4.398523324; 420, 5.081767332; 421, 5.770522411; 422, 6.567811115; 423, 7.377835069; 424, 8.151807454; 425, 8.824999376; 426, 9.496309196; 427, 9.915708658; 428, 10.25328635; 429, 10.60439818; 430, 10.59647543; 431, 10.50510341; 432, 10.2508016; 433, 9.84749075; 434, 9.433736274; 435, 8.908624288; 436, 8.425792671; 437, 7.974165688; 438, 7.612117145; 439, 7.291147688; 440, 7.123279829; 441, 7.006257884; 442, 7.025406784; 443, 7.149890959; 444, 7.355293335; 445, 7.677737058; 446, 8.131301899; 447, 8.704863429; 448, 9.421167533; 449, 10.21262372; 450, 11.09660154; 451, 11.96118407; 452, 12.75440893; 453, 13.45116343; 454, 13.96375243; 455, 14.20217153; 456, 14.1852743; 457, 13.8368643; 458, 13.2837718; 459, 12.51169217; 460, 11.65975216; 461, 10.77712004; 462, 9.969739326; 463, 9.243374226; 464, 8.613017298; 465, 8.08587209; 466, 7.675843026; 467, 7.368134925; 468, 7.085566001; 469, 6.860217368; 470, 6.616172907; 471, 6.364352801; 472, 6.09283932; 473, 5.802795446; 474, 5.51008184; 475, 5.21613722; 476, 4.946964678; 477, 4.70803478; 478, 4.482311948; 479, 4.29295244; 480, 4.152951951; 481, 4.060289127; 482, 4.020927916; 483, 4.0032086; 484, 4.019216675; 485, 4.0610385; 486, 4.137333932; 487, 4.220121949; 488, 4.32326157; 489, 4.439588389; 490, 4.602361046; 491, 4.753973686; 492, 4.937876028; 493, 5.151954338; 494, 5.377030853; 495, 5.634862641; 496, 5.890852923; 497, 6.201075866; 498, 6.511555757; 499, 6.864082982; 500, 7.235156975; 501, 7.62978736; 502, 8.096616934; 503, 8.584850946; 504, 9.069123363; 505, 9.563319438; 506, 10.05732713; 507, 10.62255346; 508, 11.16172848; 509, 11.71150022; 510, 12.26459489; 511, 12.76507563; 512, 13.32048284; 513, 13.8921908; 514, 14.37779509; 515, 14.87652806; 516, 15.29401718; 517, 15.73393281; 518, 16.0881197; 519, 16.37738476; 520, 16.66298615; 521, 16.81982334; 522, 16.90753943; 523, 16.98996529; 524, 16.95429537; 525, 16.89578056; 526, 16.87736403; 527, 16.74743968; 528, 16.58747421; 529, 16.42084468; 530, 16.16573974; 531, 15.97999238; 532, 15.73965741; 533, 15.49614712; 534, 15.18826301; 535, 14.94237956; 536, 14.68245325; 537, 14.40732702; 538, 14.17780463; 539, 13.94165198; 540, 13.734232; 541, 13.52245406; 542, 13.32513337; 543, 13.12101742; 544, 12.94211116; 545, 12.77999817; 546, 12.62662295; 547, 12.4821933; 548, 12.35177497; 549, 12.21991073; 550, 12.08647619; 551, 11.98452482; 552, 11.90825142; 553, 11.81823837; 554, 11.74523699; 555, 11.66722429; 556, 11.60004609; 557, 11.53319817; 558, 11.50226392; 559, 11.42899377; 560, 11.41685611; 561, 11.41582369; 562, 11.43024218; 563, 11.42735896; 564, 11.46659906; 565, 11.48453868; 566, 11.4960408; 567, 11.52142283; 568, 11.56664365; 569, 11.58980425; 570, 11.61547065; 571, 11.67084621; 572, 11.72180551; 573, 11.76755648; 574, 11.82873218; 575, 11.88561655; 576, 12.02230227; 577, 12.04914668; 578, 12.12537132; 579, 12.24252349; 580, 12.30913683; 581, 12.37825032; 582, 12.50464162; 583, 12.59773767; 584, 12.72233224; 585, 12.82786734; 586, 12.87388886; 587, 12.97625691; 588, 13.10585869; 589, 13.21762636; 590, 13.31173478; 591, 13.43644095; 592, 13.54634277; 593, 13.69224625; 594, 13.81960726; 595, 13.95574166; 596, 14.10882655; 597, 14.30497622; 598, 14.44630907; 599, 14.61495672; 600, 14.87107246; 601, 15.08449012; 602, 15.30068156; 603, 15.58451597; 604, 15.86187994; 605, 16.20487429; 606, 16.50361951; 607, 16.92018559; 608, 17.26286027; 609, 17.68946088; 610, 18.12876108; 611, 18.64473908; 612, 19.14451373; 613, 19.70514418; 614, 20.30129329; 615, 20.85780228; 616, 21.43525988; 617, 21.96044347; 618, 22.46147343; 619, 22.89012259; 620, 23.05214788; 621, 23.23966442; 622, 23.09381519; 623, 22.97773561; 624, 22.48085461; 625, 21.92017459; 626, 21.12662955; 627, 20.28861518; 628, 19.37899094; 629, 18.45518315; 630, 17.62095139; 631, 16.72342124; 632, 15.95016577; 633, 15.28844731; 634, 14.67243156; 635, 14.18599657; 636, 13.74806248; 637, 13.36475573; 638, 13.01406488; 639, 12.71729631; 640, 12.46373965; 641, 12.20058203; 642, 11.94480268; 643, 11.78453312; 644, 11.55936197; 645, 11.38567051; 646, 11.23078998; 647, 11.07311068; 648, 10.87315426; 649, 10.6907593; 650, 10.56628731; 651, 10.37654918; 652, 10.2468707; 653, 10.13221104; 654, 9.977966793; 655, 9.790495143; 656, 9.673641681; 657, 9.525438256; 658, 9.336615723; 659, 9.189255488; 660, 9.066462809; 661, 8.921741595; 662, 8.789070779; 663, 8.659671649; 664, 8.503942729; 665, 8.348296548; 666, 8.199182175; 667, 8.062405648; 668, 7.925061398; 669, 7.799759393; 670, 7.683344237; 671, 7.553353471; 672, 7.427152555; 673, 7.285093843; 674, 7.170646368; 675, 7.074476911; 676, 6.901647803; 677, 6.765016355; 678, 6.635779854; 679, 6.512784383; 680, 6.386380242; 681, 6.27638586; 682, 6.14920132; 683, 6.016945916; 684, 5.888819214; 685, 5.765535804; 686, 5.656481795; 687, 5.536624171; 688, 5.402825517; 689, 5.293449339; 690, 5.159820111; 691, 5.06336754; 692, 4.946325593; 693, 4.848210827; 694, 4.722264916; 695, 4.630391613; 696, 4.512755809; 697, 4.413606938; 698, 4.301500227; 699, 4.200315644; 700, 4.111376531; 701, 4.004798914; 702, 3.907295121; 703, 3.810927263; 704, 3.737455746; 705, 3.639137755; 706, 3.553947028; 707, 3.462972203; 708, 3.380352035; 709, 3.285806778; 710, 3.200276766; 711, 3.126856164; 712, 3.038392396; 713, 2.965327761; 714, 2.898351846; 715, 2.813534203; 716, 2.748797225; 717, 2.672765035; 718, 2.605874266; 719, 2.533674744; 720, 2.472109411; 721, 2.405133928; 722, 2.341719859; 723, 2.276779655; 724, 2.217724513; 725, 2.169950708; 726, 2.103022899; 727, 2.052033177; 728, 2.010329956; 729, 1.954223898; 730, 1.892428772; 731, 1.840564485; 732, 1.783799194; 733, 1.745825456; 734, 1.692400804; 735, 1.644251106; 736, 1.600290477; 737, 1.56900072; 738, 1.515950989; 739, 1.479744083; 740, 1.440297933; 741, 1.400521727; 742, 1.354590608; 743, 1.322099695; 744, 1.28661579; 745, 1.251047173; 746, 1.213361805; 747, 1.168943379; 748, 1.142587454; 749, 1.116214413; 750, 1.08327774; 751, 1.046999995; 752, 1.020016414; 753, 0.996289192; 754, 0.965150341; 755, 0.941575862; 756, 0.913523944; 757, 0.888405782; 758, 0.860336748; 759, 0.838220806; 760, 0.81927651; 761, 0.796108913; 762, 0.77080421; 763, 0.747365358; 764, 0.72784432; 765, 0.711749068; 766, 0.689870582; 767, 0.671282254; 768, 0.645129554; 769, 0.63683613; 770, 0.611277287; 771, 0.59703077; 772, 0.582818053; 773, 0.561312651; 774, 0.543589435; 775, 0.529682204; 776, 0.513383294; 777, 0.500714259; 778, 0.487417569; 779, 0.474595791; 780, 0.463096922 ]; % 您的原始数据 % 将SPD数据映射到波长范围 spd_uniform(21:421) = spd_data(:,2); % 380nm→索引21,780nm→索引421 % ============================== % 2. 加载CIE标准数据D65 SPD % ============================== % CIE 1931 2°标准观察者 cie_raw = [ 360, 0.17556, 0.005294, 0.819146; 365, 0.175161, 0.005256, 0.819582; 370, 0.174821, 0.005221, 0.819959; 375, 0.17451, 0.005182, 0.820309; 380, 0.174112, 0.004964, 0.820924; 385, 0.174008, 0.004981, 0.821012; 390, 0.173801, 0.004915, 0.821284; 395, 0.17356, 0.004923, 0.821517; 400, 0.173337, 0.004797, 0.821866; 405, 0.173021, 0.004775, 0.822204; 410, 0.172577, 0.004799, 0.822624; 415, 0.172087, 0.004833, 0.823081; 420, 0.171407, 0.005102, 0.82349; 425, 0.170301, 0.005789, 0.823911; 430, 0.168878, 0.0069, 0.824222; 435, 0.166895, 0.008556, 0.824549; 440, 0.164412, 0.010858, 0.824731; 445, 0.161105, 0.013793, 0.825102; 450, 0.156641, 0.017705, 0.825654; 455, 0.150985, 0.02274, 0.826274; 460, 0.14396, 0.029703, 0.826337; 465, 0.135503, 0.039879, 0.824618; 470, 0.124118, 0.057803, 0.818079; 475, 0.109594, 0.086843, 0.803563; 480, 0.091294, 0.132702, 0.776004; 485, 0.068706, 0.200723, 0.730571; 490, 0.045391, 0.294976, 0.659633; 495, 0.02346, 0.412703, 0.563837; 500, 0.008168, 0.538423, 0.453409; 505, 0.003859, 0.654823, 0.341318; 510, 0.01387, 0.750186, 0.235943; 515, 0.038852, 0.812016, 0.149132; 520, 0.074302, 0.833803, 0.091894; 525, 0.114161, 0.826207, 0.059632; 530, 0.154722, 0.805864, 0.039414; 535, 0.192876, 0.781629, 0.025495; 540, 0.22962, 0.754329, 0.016051; 545, 0.265775, 0.724324, 0.009901; 550, 0.301604, 0.692308, 0.006088; 555, 0.337363, 0.658848, 0.003788; 560, 0.373102, 0.624451, 0.002448; 565, 0.408736, 0.589607, 0.001657; 570, 0.444062, 0.554714, 0.001224; 575, 0.478775, 0.520202, 0.001023; 580, 0.512486, 0.486591, 0.000923; 585, 0.544787, 0.454434, 0.000779; 590, 0.575151, 0.424232, 0.000616; 595, 0.602933, 0.396497, 0.000571; 600, 0.627037, 0.372491, 0.000472; 605, 0.648233, 0.351395, 0.000372; 610, 0.665764, 0.334011, 0.000226; 615, 0.680079, 0.319747, 0.000174; 620, 0.691504, 0.308342, 0.000154; 625, 0.700606, 0.299301, 0.000093; 630, 0.707918, 0.292027, 0.000055; 635, 0.714032, 0.285929, 0.00004; 640, 0.719033, 0.280935, 0.000032; 645, 0.723032, 0.276948, 0.00002; 650, 0.725992, 0.274008, 0; 655, 0.728272, 0.271728, 0; 660, 0.729969, 0.270031, 0; 665, 0.731089, 0.268911, 0; 670, 0.731993, 0.268007, 0; 675, 0.732719, 0.267281, 0; 680, 0.733417, 0.266583, 0; 685, 0.734047, 0.265953, 0; 690, 0.73439, 0.26561, 0; 695, 0.734592, 0.265408, 0; 700, 0.73469, 0.26531, 0; 705, 0.73469, 0.26531, 0; 710, 0.73469, 0.26531, 0; 715, 0.734548, 0.265452, 0; 720, 0.73469, 0.26531, 0; 725, 0.73469, 0.26531, 0; 730, 0.73469, 0.26531, 0; 735, 0.73469, 0.26531, 0; 740, 0.73469, 0.26531, 0; 745, 0.73469, 0.26531, 0; 750, 0.73469, 0.26531, 0; 755, 0.73469, 0.26531, 0; 760, 0.73469, 0.26531, 0; 765, 0.73469, 0.26531, 0; 770, 0.73469, 0.26531, 0; 775, 0.73469, 0.26531, 0; 780, 0.73469, 0.26531, 0; 785, 0.73469, 0.26531, 0; 790, 0.73469, 0.26531, 0; 795, 0.73469, 0.26531, 0; 800, 0.73469, 0.26531, 0; 805, 0.73469, 0.26531, 0; 810, 0.73469, 0.26531, 0; 815, 0.73469, 0.26531, 0; 820, 0.73469, 0.26531, 0; 825, 0.73469, 0.26531, 0; 830, 0.73469, 0.26531, 0 ]; % 您的原始数据 cie_interp = griddedInterpolant(cie_raw(:,1), cie_raw(:,2:4), &#39;linear&#39;, &#39;nearest&#39;); xyz_interp = cie_interp(wavelength_range); x_bar = xyz_interp(:,1); y_bar = xyz_interp(:,2); z_bar = xyz_interp(:,3); % 加载D65标准光源SPD (新提供的数据) d65_data = [ 300 , 0.0341 ; 301 , 0.36014 ; 302 , 0.68618 ; 303 , 1.01222 ; 304 , 1.33826 ; 305 , 1.6643 ; 306 , 1.99034 ; 307 , 2.31638 ; 308 , 2.64242 ; 309 , 2.96846 ; 310 , 3.2945 ; 311 , 4.98865 ; 312 , 6.6828 ; 313 , 8.37695 ; 314 , 10.0711 ; 315 , 11.7652 ; 316 , 13.4594 ; 317 , 15.1535 ; 318 , 16.8477 ; 319 , 18.5418 ; 320 , 20.236 ; 321 , 21.9177 ; 322 , 23.5995 ; 323 , 25.2812 ; 324 , 26.963 ; 325 , 28.6447 ; 326 , 30.3265 ; 327 , 32.0082 ; 328 , 33.69 ; 329 , 35.3717 ; 330 , 37.0535 ; 331 , 37.343 ; 332 , 37.6326 ; 333 , 37.9221 ; 334 , 38.2116 ; 335 , 38.5011 ; 336 , 38.7907 ; 337 , 39.0802 ; 338 , 39.3697 ; 339 , 39.6593 ; 340 , 39.9488 ; 341 , 40.4451 ; 342 , 40.9414 ; 343 , 41.4377 ; 344 , 41.934 ; 345 , 42.4302 ; 346 , 42.9265 ; 347 , 43.4228 ; 348 , 43.9191 ; 349 , 44.4154 ; 350 , 44.9117 ; 351 , 45.0844 ; 352 , 45.257 ; 353 , 45.4297 ; 354 , 45.6023 ; 355 , 45.775 ; 356 , 45.9477 ; 357 , 46.1203 ; 358 , 46.293 ; 359 , 46.4656 ; 360 , 46.6383 ; 361 , 47.1834 ; 362 , 47.7285 ; 363 , 48.2735 ; 364 , 48.8186 ; 365 , 49.3637 ; 366 , 49.9088 ; 367 , 50.4539 ; 368 , 50.9989 ; 369 , 51.544 ; 370 , 52.0891 ; 371 , 51.8777 ; 372 , 51.6664 ; 373 , 51.455 ; 374 , 51.2437 ; 375 , 51.0323 ; 376 , 50.8209 ; 377 , 50.6096 ; 378 , 50.3982 ; 379 , 50.1869 ; 380 , 49.9755 ; 381 , 50.4428 ; 382 , 50.91 ; 383 , 51.3773 ; 384 , 51.8446 ; 385 , 52.3118 ; 386 , 52.7791 ; 387 , 53.2464 ; 388 , 53.7137 ; 389 , 54.1809 ; 390 , 54.6482 ; 391 , 57.4589 ; 392 , 60.2695 ; 393 , 63.0802 ; 394 , 65.8909 ; 395 , 68.7015 ; 396 , 71.5122 ; 397 , 74.3229 ; 398 , 77.1336 ; 399 , 79.9442 ; 400 , 82.7549 ; 401 , 83.628 ; 402 , 84.5011 ; 403 , 85.3742 ; 404 , 86.2473 ; 405 , 87.1204 ; 406 , 87.9936 ; 407 , 88.8667 ; 408 , 89.7398 ; 409 , 90.6129 ; 410 , 91.486 ; 411 , 91.6806 ; 412 , 91.8752 ; 413 , 92.0697 ; 414 , 92.2643 ; 415 , 92.4589 ; 416 , 92.6535 ; 417 , 92.8481 ; 418 , 93.0426 ; 419 , 93.2372 ; 420 , 93.4318 ; 421 , 92.7568 ; 422 , 92.0819 ; 423 , 91.4069 ; 424 , 90.732 ; 425 , 90.057 ; 426 , 89.3821 ; 427 , 88.7071 ; 428 , 88.0322 ; 429 , 87.3572 ; 430 , 86.6823 ; 431 , 88.5006 ; 432 , 90.3188 ; 433 , 92.1371 ; 434 , 93.9554 ; 435 , 95.7736 ; 436 , 97.5919 ; 437 , 99.4102 ; 438 , 101.228 ; 439 , 103.047 ; 440 , 104.865 ; 441 , 106.079 ; 442 , 107.294 ; 443 , 108.508 ; 444 , 109.722 ; 445 , 110.936 ; 446 , 112.151 ; 447 , 113.365 ; 448 , 114.579 ; 449 , 115.794 ; 450 , 117.008 ; 451 , 117.088 ; 452 , 117.169 ; 453 , 117.249 ; 454 , 117.33 ; 455 , 117.41 ; 456 , 117.49 ; 457 , 117.571 ; 458 , 117.651 ; 459 , 117.732 ; 460 , 117.812 ; 461 , 117.517 ; 462 , 117.222 ; 463 , 116.927 ; 464 , 116.632 ; 465 , 116.336 ; 466 , 116.041 ; 467 , 115.746 ; 468 , 115.451 ; 469 , 115.156 ; 470 , 114.861 ; 471 , 114.967 ; 472 , 115.073 ; 473 , 115.18 ; 474 , 115.286 ; 475 , 115.392 ; 476 , 115.498 ; 477 , 115.604 ; 478 , 115.711 ; 479 , 115.817 ; 480 , 115.923 ; 481 , 115.212 ; 482 , 114.501 ; 483 , 113.789 ; 484 , 113.078 ; 485 , 112.367 ; 486 , 111.656 ; 487 , 110.945 ; 488 , 110.233 ; 489 , 109.522 ; 490 , 108.811 ; 491 , 108.865 ; 492 , 108.92 ; 493 , 108.974 ; 494 , 109.028 ; 495 , 109.082 ; 496 , 109.137 ; 497 , 109.191 ; 498 , 109.245 ; 499 , 109.3 ; 500 , 109.354 ; 501 , 109.199 ; 502 , 109.044 ; 503 , 108.888 ; 504 , 108.733 ; 505 , 108.578 ; 506 , 108.423 ; 507 , 108.268 ; 508 , 108.112 ; 509 , 107.957 ; 510 , 107.802 ; 511 , 107.501 ; 512 , 107.2 ; 513 , 106.898 ; 514 , 106.597 ; 515 , 106.296 ; 516 , 105.995 ; 517 , 105.694 ; 518 , 105.392 ; 519 , 105.091 ; 520 , 104.79 ; 521 , 105.08 ; 522 , 105.37 ; 523 , 105.66 ; 524 , 105.95 ; 525 , 106.239 ; 526 , 106.529 ; 527 , 106.819 ; 528 , 107.109 ; 529 , 107.399 ; 530 , 107.689 ; 531 , 107.361 ; 532 , 107.032 ; 533 , 106.704 ; 534 , 106.375 ; 535 , 106.047 ; 536 , 105.719 ; 537 , 105.39 ; 538 , 105.062 ; 539 , 104.733 ; 540 , 104.405 ; 541 , 104.369 ; 542 , 104.333 ; 543 , 104.297 ; 544 , 104.261 ; 545 , 104.225 ; 546 , 104.19 ; 547 , 104.154 ; 548 , 104.118 ; 549 , 104.082 ; 550 , 104.046 ; 551 , 103.641 ; 552 , 103.237 ; 553 , 102.832 ; 554 , 102.428 ; 555 , 102.023 ; 556 , 101.618 ; 557 , 101.214 ; 558 , 100.809 ; 559 , 100.405 ; 560 , 100 ; 561 , 99.6334 ; 562 , 99.2668 ; 563 , 98.9003 ; 564 , 98.5337 ; 565 , 98.1671 ; 566 , 97.8005 ; 567 , 97.4339 ; 568 , 97.0674 ; 569 , 96.7008 ; 570 , 96.3342 ; 571 , 96.2796 ; 572 , 96.225 ; 573 , 96.1703 ; 574 , 96.1157 ; 575 , 96.0611 ; 576 , 96.0065 ; 577 , 95.9519 ; 578 , 95.8972 ; 579 , 95.8426 ; 580 , 95.788 ; 581 , 95.0778 ; 582 , 94.3675 ; 583 , 93.6573 ; 584 , 92.947 ; 585 , 92.2368 ; 586 , 91.5266 ; 587 , 90.8163 ; 588 , 90.1061 ; 589 , 89.3958 ; 590 , 88.6856 ; 591 , 88.8177 ; 592 , 88.9497 ; 593 , 89.0818 ; 594 , 89.2138 ; 595 , 89.3459 ; 596 , 89.478 ; 597 , 89.61 ; 598 , 89.7421 ; 599 , 89.8741 ; 600 , 90.0062 ; 601 , 89.9655 ; 602 , 89.9248 ; 603 , 89.8841 ; 604 , 89.8434 ; 605 , 89.8026 ; 606 , 89.7619 ; 607 , 89.7212 ; 608 , 89.6805 ; 609 , 89.6398 ; 610 , 89.5991 ; 611 , 89.4091 ; 612 , 89.219 ; 613 , 89.029 ; 614 , 88.8389 ; 615 , 88.6489 ; 616 , 88.4589 ; 617 , 88.2688 ; 618 , 88.0788 ; 619 , 87.8887 ; 620 , 87.6987 ; 621 , 87.2577 ; 622 , 86.8167 ; 623 , 86.3757 ; 624 , 85.9347 ; 625 , 85.4936 ; 626 , 85.0526 ; 627 , 84.6116 ; 628 , 84.1706 ; 629 , 83.7296 ; 630 , 83.2886 ; 631 , 83.3297 ; 632 , 83.3707 ; 633 , 83.4118 ; 634 , 83.4528 ; 635 , 83.4939 ; 636 , 83.535 ; 637 , 83.576 ; 638 , 83.6171 ; 639 , 83.6581 ; 640 , 83.6992 ; 641 , 83.332 ; 642 , 82.9647 ; 643 , 82.5975 ; 644 , 82.2302 ; 645 , 81.863 ; 646 , 81.4958 ; 647 , 81.1285 ; 648 , 80.7613 ; 649 , 80.394 ; 650 , 80.0268 ; 651 , 80.0456 ; 652 , 80.0644 ; 653 , 80.0831 ; 654 , 80.1019 ; 655 , 80.1207 ; 656 , 80.1395 ; 657 , 80.1583 ; 658 , 80.177 ; 659 , 80.1958 ; 660 , 80.2146 ; 661 , 80.4209 ; 662 , 80.6272 ; 663 , 80.8336 ; 664 , 81.0399 ; 665 , 81.2462 ; 666 , 81.4525 ; 667 , 81.6588 ; 668 , 81.8652 ; 669 , 82.0715 ; 670 , 82.2778 ; 671 , 81.8784 ; 672 , 81.4791 ; 673 , 81.0797 ; 674 , 80.6804 ; 675 , 80.281 ; 676 , 79.8816 ; 677 , 79.4823 ; 678 , 79.0829 ; 679 , 78.6836 ; 680 , 78.2842 ; 681 , 77.4279 ; 682 , 76.5716 ; 683 , 75.7153 ; 684 , 74.859 ; 685 , 74.0027 ; 686 , 73.1465 ; 687 , 72.2902 ; 688 , 71.4339 ; 689 , 70.5776 ; 690 , 69.7213 ; 691 , 69.9101 ; 692 , 70.0989 ; 693 , 70.2876 ; 694 , 70.4764 ; 695 , 70.6652 ; 696 , 70.854 ; 697 , 71.0428 ; 698 , 71.2315 ; 699 , 71.4203 ; 700 , 71.6091 ; 701 , 71.8831 ; 702 , 72.1571 ; 703 , 72.4311 ; 704 , 72.7051 ; 705 , 72.979 ; 706 , 73.253 ; 707 , 73.527 ; 708 , 73.801 ; 709 , 74.075 ; 710 , 74.349 ; 711 , 73.0745 ; 712 , 71.8 ; 713 , 70.5255 ; 714 , 69.251 ; 715 , 67.9765 ; 716 , 66.702 ; 717 , 65.4275 ; 718 , 64.153 ; 719 , 62.8785 ; 720 , 61.604 ; 721 , 62.4322 ; 722 , 63.2603 ; 723 , 64.0885 ; 724 , 64.9166 ; 725 , 65.7448 ; 726 , 66.573 ; 727 , 67.4011 ; 728 , 68.2293 ; 729 , 69.0574 ; 730 , 69.8856 ; 731 , 70.4057 ; 732 , 70.9259 ; 733 , 71.446 ; 734 , 71.9662 ; 735 , 72.4863 ; 736 , 73.0064 ; 737 , 73.5266 ; 738 , 74.0467 ; 739 , 74.5669 ; 740 , 75.087 ; 741 , 73.9376 ; 742 , 72.7881 ; 743 , 71.6387 ; 744 , 70.4893 ; 745 , 69.3398 ; 746 , 68.1904 ; 747 , 67.041 ; 748 , 65.8916 ; 749 , 64.7421 ; 750 , 63.5927 ; 751 , 61.8752 ; 752 , 60.1578 ; 753 , 58.4403 ; 754 , 56.7229 ; 755 , 55.0054 ; 756 , 53.288 ; 757 , 51.5705 ; 758 , 49.8531 ; 759 , 48.1356 ; 760 , 46.4182 ; 761 , 48.4569 ; 762 , 50.4956 ; 763 , 52.5344 ; 764 , 54.5731 ; 765 , 56.6118 ; 766 , 58.6505 ; 767 , 60.6892 ; 768 , 62.728 ; 769 , 64.7667 ; 770 , 66.8054 ; 771 , 66.4631 ; 772 , 66.1209 ; 773 , 65.7786 ; 774 , 65.4364 ; 775 , 65.0941 ; 776 , 64.7518 ; 777 , 64.4096 ; 778 , 64.0673 ; 779 , 63.7251 ; 780 , 63.3828 ; 781 , 63.4749 ; 782 , 63.567 ; 783 , 63.6592 ; 784 , 63.7513 ; 785 , 63.8434 ; 786 , 63.9355 ; 787 , 64.0276 ; 788 , 64.1198 ; 789 , 64.2119 ; 790 , 64.304 ; 791 , 63.8188 ; 792 , 63.3336 ; 793 , 62.8484 ; 794 , 62.3632 ; 795 , 61.8779 ; 796 , 61.3927 ; 797 , 60.9075 ; 798 , 60.4223 ; 799 , 59.9371 ; 800 , 59.4519 ; 801 , 58.7026 ; 802 , 57.9533 ; 803 , 57.204 ; 804 , 56.4547 ; 805 , 55.7054 ; 806 , 54.9562 ; 807 , 54.2069 ; 808 , 53.4576 ; 809 , 52.7083 ; 810 , 51.959 ; 811 , 52.5072 ; 812 , 53.0553 ; 813 , 53.6035 ; 814 , 54.1516 ; 815 , 54.6998 ; 816 , 55.248 ; 817 , 55.7961 ; 818 , 56.3443 ; 819 , 56.8924 ; 820 , 57.4406 ; 821 , 57.7278 ; 822 , 58.015 ; 823 , 58.3022 ; 824 , 58.5894 ; 825 , 58.8765 ; 826 , 59.1637 ; 827 , 59.4509 ; 828 , 59.7381 ; 829 , 60.0253 ; 830 , 60.3125 ; ]; % 替换为您的D65数据 d65_interp = griddedInterpolant(d65_data(:,1), d65_data(:,2), &#39;linear&#39;, &#39;nearest&#39;); d65_spd = d65_interp(wavelength_range); % ============================== % 3. 计算CIEXYZ & 色品坐标 % ============================== delta_lambda = 1.0; k = 100 / sum(spd_uniform .* y_bar * delta_lambda); X = k * sum(spd_uniform .* x_bar * delta_lambda); Y = k * sum(spd_uniform .* y_bar * delta_lambda); Z = k * sum(spd_uniform .* z_bar * delta_lambda); x = X / (X + Y + Z); y = Y / (X + Y + Z); % ============================== % 4. CCT & Duv计算 (Robertson方法) % ============================== % 转换到CIE 1960 UCS u = 4*X / (X + 15*Y + 3*Z); v = 6*Y / (X + 15*Y + 3*Z); % 黑体辐射轨迹参数 T_range = 1000:1:20000; % 温度范围(K) min_dist = inf; cct_est = 6500; % 初始估计值 % 预计算黑体轨迹 c1 = 3.74183e-16; % W.m^2 c2 = 1.4388e-2; % m.K lambda_m = wavelength_range * 1e-9; % 转换为米 % 遍历温度寻找最近点 for T = T_range % 普朗克辐射公式 spd_bb = c1 ./ (lambda_m.^5 .* (exp(c2./(lambda_m*T)) - 1)); % 归一化 k_bb = 100 / sum(spd_bb .* y_bar * delta_lambda); X_bb = k_bb * sum(spd_bb .* x_bar * delta_lambda); Y_bb = k_bb * sum(spd_bb .* y_bar * delta_lambda); Z_bb = k_bb * sum(spd_bb .* z_bar * delta_lambda); % 转换到CIE 1960 UCS u_bb = 4*X_bb/(X_bb + 15*Y_bb + 3*Z_bb); v_bb = 6*Y_bb/(X_bb + 15*Y_bb + 3*Z_bb); % 计算距离 dist = sqrt((u - u_bb)^2 + (v - v_bb)^2); if dist < min_dist min_dist = dist; cct_est = T; u_bb_min = u_bb; v_bb_min = v_bb; end end %McAamy公式计算CCT n = (u - 0.3320) / (v - 0.1858); CCT = -449 * n^3 + 3525 * n^2 - 6823.3 * n + 5520.33; % 计算Duv (基于黑体轨迹的垂直距离) %CCT = cct_est; Duv = sign(v - v_bb_min) * min_dist; % 带符号的Duv % ============================== % 5. mel-DER计算 (使用D65参考) % ============================== % 褪黑素敏感度函数 (CIE S 026/E:2018) mel_lambda = (360:10:830)&#39;; mel_response = [ 0.0000, 0.0001, 0.0004, 0.0008, 0.0015, 0.0030, 0.0061, 0.0110, 0.0177, 0.0259,... 0.0351, 0.0450, 0.0560, 0.0660, 0.0750, 0.0820, 0.0880, 0.0920, 0.0950, 0.0960,... 0.0970, 0.0960, 0.0930, 0.0890, 0.0840, 0.0780, 0.0720, 0.0650, 0.0580, 0.0510,... 0.0450, 0.0390, 0.0330, 0.0280, 0.0230, 0.0190, 0.0150, 0.0120, 0.0090, 0.0070,... 0.0050, 0.0040, 0.0030, 0.0022, 0.0015, 0.0010, 0.0007, 0.0005 ]; % 您的原始数据 mel_interp = griddedInterpolant(mel_lambda, mel_response, &#39;linear&#39;, &#39;nearest&#39;); mel_curve = mel_interp(wavelength_range); % 归一化D65到Y=100 k_d65 = 100 / sum(d65_spd .* y_bar * delta_lambda); d65_spd_normalized = d65_spd * k_d65; % 计算褪黑素照度 E_mel_test = sum(spd_uniform .* mel_curve * delta_lambda); E_mel_d65 = sum(d65_spd_normalized .* mel_curve * delta_lambda); mel_DER = E_mel_test / E_mel_d65; % 相对于D65的比值 % ============================== % 6. Rf & Rg计算 (使用D65参考) % ============================== % 加载TM-30测试色样反射率 % tm30_reflectances = dlmread(&#39;tm30_test_samples.csv&#39;); % 99个色样反射率 % 此处简化: 使用随机反射率矩阵模拟 tm30_reflectances = rand(length(wavelength_range), 99); % 根据CCT选择参考光源 if CCT < 5000 % 生成黑体辐射参考光源 spd_bb = c1 ./ (lambda_m.^5 .* (exp(c2./(lambda_m*CCT)) - 1)); k_bb = 100 / sum(spd_bb .* y_bar * delta_lambda); ref_spd = spd_bb * k_bb; else ref_spd = d65_spd_normalized; % CCT≥5000K用D65 end % 初始化变量 de_sum = 0; test_points = []; ref_points = []; % 遍历99个测试色样 for i = 1:99 refl = tm30_reflectances(:, i); % 测试光源下色样XYZ X_test = sum(spd_uniform .* refl .* x_bar) * delta_lambda; Y_test = sum(spd_uniform .* refl .* y_bar) * delta_lambda; Z_test = sum(spd_uniform .* refl .* z_bar) * delta_lambda; % 参考光源下色样XYZ X_ref = sum(ref_spd .* refl .* x_bar) * delta_lambda; Y_ref = sum(ref_spd .* refl .* y_bar) * delta_lambda; Z_ref = sum(ref_spd .* refl .* z_bar) * delta_lambda; % 转换为CIELAB Lab_test = xyz2lab([X_test, Y_test, Z_test]); Lab_ref = xyz2lab([X_ref, Y_ref, Z_ref]); % 计算CIEDE2000色差 de = ciede2000(Lab_test, Lab_ref); de_sum = de_sum + de; end % 计算Rf Rf = 100 - 4.6 * (de_sum / 99); % TM-30缩放因子 % 简化Rg计算 (实际需要凸包面积) Rg = 100 * (1 + 0.01*(rand()-0.5)); % 随机值模拟 % ============================== % 7. 输出计算结果 % ============================== fprintf("\n%40s\n", repmat(&#39;=&#39;,1,40)); fprintf("CCT ≈ %.2f K\n", CCT); fprintf("Duv ≈ %.6f\n", Duv); fprintf("mel-DER (vs D65) ≈ %.4f\n", mel_DER); fprintf("Rf ≈ %.2f\n", Rf); fprintf("Rg ≈ %.2f\n", Rg); fprintf("%40s\n", repmat(&#39;=&#39;,1,40)); % ============================== % 8. 可视化结果 % ============================== figure(&#39;Position&#39;, [100, 100, 900, 500]); plot(wavelength_range, spd_uniform, &#39;LineWidth&#39;, 2); hold on; plot(wavelength_range, d65_spd_normalized, &#39;LineWidth&#39;, 2); plot(wavelength_range, mel_curve * max(spd_uniform), &#39;--&#39;, &#39;LineWidth&#39;, 1.5); xlabel(&#39;波长 (nm)&#39;); ylabel(&#39;相对功率&#39;); title(&#39;SPD、D65参考与褪黑素敏感度曲线&#39;); legend(&#39;测试光源SPD&#39;, &#39;D65参考光源&#39;, &#39;褪黑素敏感度曲线(缩放)&#39;); grid on; saveas(gcf, &#39;./SPD_D65_褪黑素曲线.jpg&#39;); % ============================== % 辅助函数定义 % ============================== function Lab = xyz2lab(XYZ) % XYZ转CIELAB (D65白点) Xn = 95.047; Yn = 100.0; Zn = 108.883; X = XYZ(1)/Xn; Y = XYZ(2)/Yn; Z = XYZ(3)/Zn; f = @(t) (t > (6/29)^3) .* t.^(1/3) + ... (t <= (6/29)^3) .* ((1/3)*(29/6)^2*t + 4/29); L = 116 * f(Y) - 16; a = 500 * (f(X) - f(Y)); b = 200 * (f(Y) - f(Z)); Lab = [L, a, b]; end function de00 = ciede2000(lab1, lab2) % 简化的CIEDE2000色差计算 % 实际实现需要完整公式,此处为简化版 L1 = lab1(1); a1 = lab1(2); b1 = lab1(3); L2 = lab2(1); a2 = lab2(2); b2 = lab2(3); % 简化的欧氏距离作为近似 de00 = sqrt((L1-L2)^2 + (a1-a2)^2 + (b1-b2)^2); end 在这代码中结果为CCT ≈ 9961.48 K Duv ≈ 0.051560 mel-DER (vs D65) ≈ 14.6299 Rf ≈ -590.09 Rg ≈ 100.45 答案除DUVRg偏差不大外埼玉都有很大的误差,在此基础上重新修改代码
最新发布
08-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值