《大话数据结构》C++实现顺序查找、折半查找、插值查找和斐波那契查找四种查找方式

本文对比了C++中四种不同的查找算法:顺序查找、二分查找、插值查找和斐波那契查找,并通过示例代码展示了每种算法的具体实现过程。通过实际应用,可以直观地看到不同算法在查找效率上的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<stdlib.h>
#include<iostream>

using namespace std;

//四种查找方式函数声明
int seqSearch(int *array,int low,int high,int key);
int binarySearch(int* array, int low, int high, int key);
int interpolationSearch(int* array, int low, int high, int key);
int FibonacciSearch(int* array, int n, int key);

//斐波那契数列的生成函数
int Fibonacci(int n);


//主函数来调用四种查找方式
int main()
{
	int* array = new int[100];
	int low = 1;
	int high = 7;

	array[1] = 2;
	array[2] = 3;
	array[3] = 7;
	array[4] = 10;
	array[5] = 14;
	array[6] = 17;
	array[7] = 23;
	int seqResult = seqSearch(array,low,high,10);
	cout << "顺序结果:" << seqResult << endl;
	int binaryResult = binarySearch(array,low,high,10);
	cout << "二分查找结果:" << binaryResult << endl;
	int interpolationResult = interpolationSearch(array, low, high, 10);
	cout << "插值查找结果:" << interpolationResult << endl;
	int FibonacciResult = FibonacciSearch(array,7,10);
	cout << "斐波那契查找结果:" << FibonacciResult << endl;
	return 0;
}

//顺序查找函数定义
int seqSearch(int* array, int low, int high, int key)
{
	for (int i = low; i < high; i++)
	{
		if (array[i] == key)
		{
			return i;
		}
	}
	return -1;
}


//折半查找函数定义
int binarySearch(int *array,int low,int high,int key)
{

	while (low <= high)
	{
		int mid = (low + high) / 2;
		if (key == array[mid])
		{
			return mid;
		}
		else if (key > array[mid])
		{
			low = mid + 1;
		}
		else
		{
			high = mid - 1;
		}
	}

	return -1;
}


//插值查找函数定义
int interpolationSearch(int* array, int low, int high, int key)
{
	while (low <= high)
	{
		int mid = low + (key-array[low])/(array[high]-array[low])*(high-low);
		if (key == array[mid])
		{
			return mid;
		}
		else if (key>array[mid])
		{
			low = mid + 1;
		}
		else
		{
			high = mid - 1;
		}
	}
	return 0;
}


//斐波那契函数定义
int FibonacciSearch(int* array, int n, int key)
{
	int low, high, mid, i, k;
	low = 1;
	high = n;
	k = 0;
	while (n>Fibonacci(k)-1)
	{
		k++;
	}
	for ( i = n; i < Fibonacci(k)-1; i++)
	{
		array[i] = array[n];
	}

	while (low<=high)
	{
		mid = low + Fibonacci(k - 1) - 1;
		if (key<array[mid])
		{
			high = mid - 1;
			k = k - 1;
		}
		else if (key>array[mid])
		{
			low = mid + 1;
			k = k - 2;
		}
		else
		{
			if (mid <= n)
			{
				return mid;
			}
			else
			{
				return n;
			}
		}
	}
	return 0;
}


//斐波那契数列生成函数定义
int Fibonacci(int n)
{
	if (n == 0)
	{
		return 0;
	}
	else if (n == 1)
	{
		return 1;
	}
	else
	{
		int i = 0, j = 1,m=0;
		for (int k = 0; k < n-1; k++)
		{
			m = i + j;
			i = j;
			j = m;
		}
		return m;
	}
	return -1;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值