一、朴素贝叶斯算法 -- 简介
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。
和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。
理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。
算法步骤:
1)收集数据;
2)准备数据:需要数值型或布尔型数据。如果是文本文件,要解析成词条向量bai;
3)分析数据:有大量特征时,用直方图分析效果更好;
4)训练算法:计算不同的独立特征的条件概率;
5)测试算法:计算错误率;
6)使用算法:一个常见的朴素贝叶斯应用是文档分类。
二、贝叶斯定理
条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在 B 发生的条件下 A 发生的概率”。
联合概率表示两个事件共同发生(数学概念上的交集)的概率。A 与 B 的联合概率表示为。
推导:
我们可以从条件概率的定义推导出贝叶斯定理。
根据条件概率的定义,在事件 B 发生的条件下事件 A 发生的概率为:
同样地,在事件 A 发生的条件下事件 B 发生的概率为:
结合这两个方程式,我们可以得到:
这个引理有时称作概率乘法规则。上式两边同除以 P(A),若P(A)是非零的,我们可以得到贝叶斯定理: