在了解分布式ID生成之前,先聊聊为什么要实现分布式ID。
众所周知,几乎所有的业务系统,都有生成一个唯一记录标识的需求,例如:
-
消息标识:message-id
-
订单标识:order-id
-
帖子标识:tiezi-id
这个记录标识往往就是数据库中的主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序。
这个记录标识上的查询,往往又有分页或者排序的业务需求,例如:
-
拉取最新的一页消息
select message-id/ order by time/ limit 100 -
拉取最新的一页订单
select order-id/ order by time/ limit 100 -
拉取最新的一页帖子
select tiezi-id/ order by time/ limit 100
所以往往要有一个time字段,并且在time字段上建立普通索引(non-cluster index)。
普通索引存储的是实际记录的指针,其访问效率会比聚集索引慢,如果记录标识在生成时能够基本按照时间有序,则可以省去这个time字段的索引查询:
select message-id/ (order by message-id)/limit 100
能这么做的前提是,message-id的生成基本是趋势时间递增的。
这就引出了记录标识生成(也就是上文提到的三个XXX-id)的两大核心需求:
-
全局唯一
-
趋势有序
分布式ID的特性
唯一性:确保生成的ID是全网唯一的。
有序递增性:确保生成的ID是对于某个用户或者业务是按一定的数字有序递增的。
高可用性:确保任何时候都能正确的生成ID。
带时间:ID里面包含时间,一眼扫过去就知道哪天的交易。
分布式ID的生成方案
1. UUID
算法的核心思想是结合机器的网卡、当地时间、一个随记数来生成UUID。
优点:
-
本地生成ID,不需要进行远程调用,时延低
-
扩展性好,基本可以认为没有性能上限
缺点:
-
无法保证趋势递增
-
uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为“转化为两个uint64整数存储”或者“折半存储”(折半后不能保证唯一性)
2. 数据库自增ID
使用数据库的id自增策略,如 MySQL 的 auto_increment。并且可以使用两台数据库分别设置不同步长,生成不重复ID的策略来实现高可用。
优点:
-
简单,使用数据库已有的功能
-
能够保证唯一性
-
能够保证递增性
-
步长固定
缺点:
-
可用性难以保证:数据库常见架构是一主多从+读写分离,生成自增ID是写请求,主库挂了就玩不转了
-
扩展性差,性能有上限:因为写入是单点,数据库主库的写性能决定ID的生成性能上限,并且难以扩展
改进方法:
-
冗余主库,避免写入单点
-
数据水平切分,保证各主库生成的ID不重复
如上图所述,由1个写库变成3个写库,每个写库设置不同的auto_increment初始值,以及相同的增长步长,以保证每个数据库生成的ID是不同的(上图中库0生成0,3,6,9…,库1生成1,4,7,10,库2生成2,5,8,11…)
改进后的架构保证了可用性,但缺点是:
-
丧失了ID生成的“绝对递增性”:先访问库0生成0,3,再访问库1生成1,可能导致在非常短的时间内,ID生成不是绝对递增的(这个问题不大,目标是趋势递增,不是绝对递增)
-
数据库的写压力依然很大,每次生成ID都要访问数据库
3. 批量生成ID
一次按需批量生成多个ID,每次生成都需要访问数据库,将数据库修改为最大的ID值,并在内存中记录当前值及最大值。
优点:
-
保证了ID生成的绝对递增有序
-
大大的降低了数据库的压力,ID生成可以做到每秒生成几万几十万个
缺点:
-
服务仍然是单点
-
如果服务挂了,服务重启起来之后,继续生成ID可能会不连续,中间出现空洞(服务内存是保存着0,1,2,3,4,5,数据库中max-id是5,分配到3时,服务重启了,下次会从6开始分配,4和5就成了空洞,不过这个问题也不大)
-
虽然每秒可以生成几万几十万个ID,但毕竟还是有性能上限,无法进行水平扩展
改进方法:
单点服务的常用高可用优化方案是“备用服务”,也叫“影子服务”,所以我们能用以下方法优化上述缺点(1):
如上图,对外提供的服务是主服务,有一个影子服务时刻处于备用状态,当主服务挂了的时候影子服务顶上。
这个切换的过程对调用方是透明的,可以自动完成,常用的技术是vip+keepalived,具体就不在这里展开。
4. Redis生成ID
Redis的所有命令操作都是单线程的,本身提供像 incr 和 increby 这样的自增原子命令,所以能保证生成的 ID 肯定是唯一有序的。
优点:不依赖于数据库,灵活方便,且性能优于数据库;数字ID天然排序,对分页或者需要排序的结果很有帮助。
缺点:如果系统中没有Redis,还需要引入新的组件,增加系统复杂度;需要编码和配置的工作量比较大。
考虑到单节点的性能瓶颈,可以使用 Redis 集群来获取更高的吞吐量。假如一个集群中有5台 Redis。可以初始化每台 Redis 的值分别是1, 2, 3, 4, 5,然后步长都是 5。各个 Redis 生成的 ID 为:
A:1, 6, 11, 16, 21
B:2, 7, 12, 17, 22
C:3, 8, 13, 18, 23
D:4, 9, 14, 19, 24
E:5, 10, 15, 20, 25
随便负载到哪个机确定好,未来很难做修改。步长和初始值一定需要事先确定。使用 Redis 集群也可以方式单点故障的问题。
另外,比较适合使用 Redis 来生成每天从0开始的流水号。比如订单号 = 日期 + 当日自增长号。可以每天在 Redis 中生成一个 Key ,使用 INCR 进行累加。
5.snowflake算法
如上图的所示,Twitter 的 Snowflake 算法由下面几部分组成:
1位符号位:
由于 long 类型在 java 中带符号的,最高位为符号位,正数为 0,负数为 1,且实际系统中所使用的ID一般都是正数,所以最高位为 0。
41位时间戳(毫秒级):
需要注意的是此处的 41 位时间戳并非存储当前时间的时间戳,而是存储时间戳的差值(当前时间戳 - 起始时间戳),这里的起始时间戳一般是ID生成器开始使用的时间戳,由程序来指定,所以41位毫秒时间戳最多可以使用 (1 << 41) / (1000x60x60x24x365) = 69年。
10位数据机器位:
包括5位数据标识位和5位机器标识位,这10位决定了分布式系统中最多可以部署 1 << 10 = 1024 s个节点。超过这个数量,生成的ID就有可能会冲突。
12位毫秒内的序列:
这 12 位计数支持每个节点每毫秒(同一台机器,同一时刻)最多生成 1 << 12 = 4096个ID
加起来刚好64位,为一个Long型。
优点:高性能,低延迟,按时间有序,一般不会造成ID碰撞
缺点:
- 需要独立的开发和部署,依赖于机器的时钟
- 由于“没有一个全局时钟”,每台服务器分配的ID是绝对递增的,但从全局看,生成的ID只是趋势递增的(有些服务器的时间早,有些服务器的时间晚)
简单实现:
public class IdWorker {
/**
* 起始时间戳 2017-04-01
*/
private final long epoch = 1491004800000L;
/**
* 机器ID所占的位数
*/
private final long workerIdBits = 5L;
/**
* 数据标识ID所占的位数
*/
private final long dataCenterIdBits = 5L;
/**
* 支持的最大机器ID,结果是31
*/
private final long maxWorkerId = ~(-1L << workerIdBits);
/**
* 支持的最大数据标识ID,结果是31
*/
private final long maxDataCenterId = ~(-1 << dataCenterIdBits);
/**
* 毫秒内序列在id中所占的位数
*/
private final long sequenceBits = 12L;
/**
* 机器ID向左移12位
*/
private final long workerIdShift = sequenceBits;
/**
* 数据标识ID向左移17(12+5)位
*/
private final long dataCenterIdShift = sequenceBits + workerIdBits;
/**
* 时间戳向左移22(12+5+5)位
*/
private final long timestampShift = sequenceBits + workerIdBits + dataCenterIdBits;
/**
* 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
*/
private final long sequenceMask = ~(-1L << sequenceBits);
/**
* 数据标识ID(0~31)
*/
private long dataCenterId;
/**
* 机器ID(0~31)
*/
private long workerId;
/**
* 毫秒内序列(0~4095)
*/
private long sequence;
/**
* 上次生成ID的时间戳
*/
private long lastTimestamp = -1L;
public IdWorker(long dataCenterId, long workerId) {
if (dataCenterId > maxDataCenterId || dataCenterId < 0) {
throw new IllegalArgumentException(String.format("dataCenterId can't be greater than %d or less than 0", maxDataCenterId));
}
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
this.dataCenterId = dataCenterId;
this.workerId = workerId;
}
/**
* 获得下一个ID (该方法是线程安全的)
* @return snowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen();
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过,这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果是同一时间生成的,则进行毫秒内序列
if (timestamp == lastTimestamp) {
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = nextMillis(lastTimestamp);
}
} else {//时间戳改变,毫秒内序列重置
sequence = 0L;
}
lastTimestamp = timestamp;
//移位并通过按位或运算拼到一起组成64位的ID
return ((timestamp - epoch) << timestampShift) |
(dataCenterId << dataCenterIdShift) |
(workerId << workerIdShift) |
sequence;
}
/**
* 返回以毫秒为单位的当前时间
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long nextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = lastTimestamp;
}
return timestamp;
}
}
附 : 美团点评分布式ID生成系统—https://tech.meituan.com/2017/04/21/mt-leaf.html