今天的北京格外的闷热,吃过晚饭打开电脑进行今天的第五个排序算法的学习,炎炎夏日,大家要注意防暑哦,下面开始学习了,一天进步一点。
原创不易,如果转载请注明链接:
https://blog.youkuaiyun.com/qq_38305457/article/details/96893538
我不能保证写的每个地方都是对的,但是至少能保证不复制,不黏贴,保证每一句话,每一行代码都经过了认真的推敲,仔细的斟酌。每一篇文章的背后,希望都能看到自己对于技术,对于生活的态度。
我相信乔布斯说的,只有那些疯狂到认为自己可以改变世界的人才能真正的改变世界。
面对压力,我可以挑灯夜战,不眠不休;面对困难,我愿意迎难而上,永不退缩。 其实我想说的是:我只是一个程序员,这就是我现在纯粹人生的全部。
归并排序是建立在归并操作上的一种有效的排序算法,1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。
1、思路分析
归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
2、算法思想
归并排序可通过两种方式实现:
•自上而下的递归
•自下而上的迭代
一、递归法(假设序列共有n个元素):
①. 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;
②. 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;
③. 重复步骤②,直到所有元素排序完毕。
二、迭代法
①. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
②. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
③. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
④. 重复步骤③直到某一指针到达序列尾
⑤. 将另一序列剩下的所有元素直接复制到合并序列尾
3、示例代码
归并排序其实要做两件事:
•分解:将序列每次折半拆分
•合并:将划分后的序列段两两排序合并
因此,归并排序实际上就是两个操作,拆分+合并
如何合并?
L[first…mid]为第一段,L[mid+1…last]为第二段,并且两端已经有序,现在我们要将两端合成达到L[first…last]并且也有序。
首先依次从第一段与第二段中取出元素比较,将较小的元素赋值给temp[]
重复执行上一步,当某一段赋值结束,则将另一段剩下的元素赋值给temp[]
此时将temp[]中的元素复制给L[],则得到的L[first…last]有序
如何分解?
在这里,我们采用递归的方法,首先将待排序列分成A,B两组;然后重复对A、B序列
分组;直到分组后组内只有一个元素,此时我们认为组内所有元素有序,则分组结束。
这里我写了递归算法如下:
**
* 归并排序(递归)
*
* ①. 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;
* ②. 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;
* ③. 重复步骤②,直到所有元素排序完毕。
* @param arr 待排序数组
*/
public static int[] mergingSort(int[] arr){
if(arr.length <= 1) return arr;
int num = arr.length >> 1;
int[] leftArr = Arrays.copyOfRange(arr, 0, num);
int[] rightArr = Arrays.copyOfRange(arr, num, arr.length);
System.out.println("split two array: " + Arrays.toString(leftArr) + " And " + Arrays.toString(rightArr));
return mergeTwoArray(mergingSort(leftArr), mergingSort(rightArr)); //不断拆分为最小单元,再排序合并
}
private static int[] mergeTwoArray(int[] arr1, int[] arr2){
int i = 0, j = 0, k = 0;
int[] result = new int[arr1.length + arr2.length]; //申请额外的空间存储合并之后的数组
while(i < arr1.length && j < arr2.length){ //选取两个序列中的较小值放入新数组
if(arr1[i] <= arr2[j]){
result[k++] = arr1[i++];
}else{
result[k++] = arr2[j++];
}
}
while(i < arr1.length){ //序列1中多余的元素移入新数组
result[k++] = arr1[i++];
}
while(j < arr2.length){ //序列2中多余的元素移入新数组
result[k++] = arr2[j++];
}
System.out.println("Merging: " + Arrays.toString(result));
return result;
}
由上, 长度为n的数组, 最终会调用mergeSort函数2n-1次。通过自上而下的递归实现的归并排序, 将存在堆栈溢出的风险。
以下是归并排序算法复杂度:
从效率上看,归并排序可算是排序算法中的”佼佼者”. 假设数组长度为n,那么拆分数组共需logn,, 又每步都是一个普通的合并子数组的过程, 时间复杂度为O(n), 故其综合时间复杂度为O(nlogn)。另一方面, 归并排序多次递归过程中拆分的子数组需要保存在内存空间, 其空间复杂度为O(n)。