推免复习之数据结构与算法 二叉树 (2)深度优先+广度优先

本文深入探讨了二叉树的深度优先遍历和广度优先遍历,提供了递归实现的前序、中序、后序遍历代码,以及使用队列实现的广度优先遍历代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇博客讲的是无聊的二叉树的性质,虽然推导过程也是挺有意思的,但这不是程序员的浪漫,Don't talk,just show me the code !所以我要写这篇对二叉树的深度优先遍历和广度优先遍历。

深度遍历直接用递归即可,主要就是二叉树的前序遍历,中序遍历和后续遍历,广度优先遍历需要借助数据结构,也就是栈,先入先出,把队首节点的左子节点和右子节点入队后,再把他们的老父亲出队,知道队列为空。

节点的定义如下所示:

class Node
{
public:
	int data;
	Node *leftChild;
	Node *rightChild;

	Node(int value,Node * Left=NULL,Node * Right=NULL)
	{
		data = value;
		leftChild = Left;
		rightChild = Right;
	}
};

前序遍历:

void dfs(Node *root)  //前序优先遍历
{
	if (root == NULL)
	{
		return;
	}
	else
	{
		cout << root->data<<endl;
		dfs(root->leftChild);
		dfs(root->rightChild);
	}
}

中序遍历:

void dfs(Node *root)  //中序优先遍历
{
	if (root == NULL)
	{
		return;
	}
	else
	{
		dfs(root->leftChild);
		cout << root->data << endl;
		dfs(root->rightChild);
	}
}

后序遍历:

void dfs(Node *root)  //后序优先遍历
{
	if (root == NULL)
	{
		return;
	}
	else
	{
		dfs(root->leftChild);
		dfs(root->rightChild);
		cout << root->data << endl;
	}
}

广度优先遍历:

void bfs(Node *root)  //广度优先遍历
{
	if (root == NULL)
	{
		return;
	}
	else
	{
		queue<Node*> q;
		q.push(root);
		while (!q.empty())
		{
			Node * father=q.front();
			if (father->leftChild != NULL)
			{
				q.push(father->leftChild);
			}
			if (father->rightChild != NULL)
			{
				q.push(father->rightChild);
			}
			cout << father->data << endl;
			q.pop();
		}
	}
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值