Python 多因素方差分析

本文探讨了如何使用Python进行双因素方差分析(ANOVA),以研究销售地区和饮料颜色对销量的影响。结果显示,颜色因素对销量有显著影响,但地区因素影响不显著。进一步通过Tukey方法进行多重比较,揭示了特定颜色间的显著性差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在实际应用中,一个实验的指标往往受到多个因素的影响。

例如饮料的销量有可能受到销售地区或者饮料颜色的影响。在方差分析中,若把饮料的颜色看做影响销量的因素A,把销售地区看做影响因素B。同时对因素A和因素B进行分析,就称为双因素方差分析。

a	b	c
a1	b1	20
a1	b2	22
a1	b3	24
a1	b4	16
a1	b5	26
a2	b1	12
a2	b2	10
a2	b3	14
a2	b4	4
a2	b5	22
a3	b1	20
a3	b2	20
a3	b3	18
a3	b4	8
a3	b5	16
a4	b1	10
a4	b2	12
a4	b3	18
a4	b4	6
a4	b5	20
a5	b1	14
a5	b2	6
a5	b3	10
a5	b4	18
a5	b5	10

from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

formula = 'c~ a + b '
anova_results = anova_lm
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值