题意
给定nn,求
解法
本题有两种化简式子的方法,虽然最后的复杂度都是O(n23n23),但是代码难度却截然不同
壹:∑ni=1∑nj=1lcm(i,j)=∑nd=1d−1∑ni=1∑nj=1ij∗[gcd(i,j)=1]∑i=1n∑j=1nlcm(i,j)=∑d=1nd−1∑i=1n∑j=1nij∗[gcd(i,j)=1]
=∑d=1nd−1∗d2∗∑i=1⌊nd⌋∑j=1⌊nd⌋ij∗[gcd(i,j)=1]=∑d=1nd−1∗d2∗∑i=1⌊nd⌋∑j=1⌊nd⌋ij∗[gcd(i,j)=1]
=∑d=1nd∑p=1⌊nd⌋μ(p)∗p2∗∑i=1⌊ndp⌋∑j=1⌊ndp⌋ij=∑d=1nd∑p=1⌊nd⌋μ(p)∗p2∗∑i=1⌊ndp⌋∑j=1⌊ndp⌋ij
令w=dpw=dp,F(n)=∑ni=1∑nj=1ijF(n)=∑i=1n∑j=1nij,则有:
原式=∑w=1nF(⌊nw⌋)∗w∗∑d|wμ(wd)∗wd=∑w=1nF(⌊nw⌋)∗w∗∑d|wμ(d)∗d原式=∑w=1nF(⌊nw⌋)∗w∗∑d|wμ(wd)∗wd=∑w=1nF(⌊nw⌋)∗w∗∑d|wμ(d)∗d
只看后半部分:
∑w=1nw∑d|wμ(d)∗d=∑w=1n∑d|wμ(d)∗d∗w=∑p=1n∑d=1⌊np⌋p∗d2∗μ(d)=∑d=1nd2∗μ(d)∑p=1⌊nd⌋p∑w=1nw∑d|wμ(d)∗d=∑w=1n∑d|wμ(d)∗d∗w=∑p=1n∑d=1⌊np⌋p∗d2∗μ(d)=∑d=1nd2∗μ(d)∑p=1⌊nd⌋p
令S(n)=∑ni=1iS(n)=∑i=1ni,有:原式=∑nd=1S(⌊nd⌋)∗d2μ(d)原式=∑d=1nS(⌊nd⌋)∗d2μ(d)
然后还是只看后半部分:
∵[n=1]=∑d|nμ(d)∵[n=1]=∑d|nμ(d)
∴∑w=1n∑d|wd2∗μ(d)∗(wd)2=∑w=1nw2∗[∑d|wμ(d)]=∑w=1nw2∗[w=1]=1∴∑w=1n∑d|wd2∗μ(d)∗(wd)2=∑w=1nw2∗[∑d|wμ(d)]=∑w=1nw2∗[w=1]=1
又∵∑w=1n∑d|wd2∗μ(d)∗(wd)2=∑k=1nk2∑d=1⌊nk⌋d2μ(d)又∵∑w=1n∑d|wd2∗μ(d)∗(wd)2=∑k=1nk2∑d=1⌊nk⌋d2μ(d)
∴12∗∑d=1nd2μ(d)=1−∑k=2nk2∑d=1⌊nk⌋d2μ(d)∴12∗∑d=1nd2μ(d)=1−∑k=2nk2∑d=1⌊nk⌋d2μ(d)
然后再一层一层套回去,很难写……
贰:∑ni=1∑nj=1lcm(i,j)=∑nd=1d−1∑ni=1∑nj=1ij∗[gcd(i,j)=1]∑i=1n∑j=1nlcm(i,j)=∑d=1nd−1∑i=1n∑j=1nij∗[gcd(i,j)=1]
=∑d=1nd∗∑i=1⌊nd⌋∑j=1⌊nd⌋ij∗[gcd(i,j)=1]=∑d=1nd∗∑i=1⌊nd⌋∑j=1⌊nd⌋ij∗[gcd(i,j)=1]
只看后面:
∑i=1⌊nd⌋∑j=1⌊nd⌋ij∗[gcd(i,j)=1]=∑i=1⌊nd⌋i∑j=1⌊nd⌋j∗[gcd(i,j)=1]=2∗∑i=1⌊nd⌋i∑j=1ij∗[gcd(i,j)=1]−1∑i=1⌊nd⌋∑j=1⌊nd⌋ij∗[gcd(i,j)=1]=∑i=1⌊nd⌋i∑j=1⌊nd⌋j∗[gcd(i,j)=1]=2∗∑i=1⌊nd⌋i∑j=1ij∗[gcd(i,j)=1]−1
=2∗∑i=1⌊nd⌋i∗i∗φ(i)+[i=1]2−1=∑i=1⌊nd⌋i2∗φ(i)=∑i=1⌊nd⌋∑p|ip2∗φ(p)∗(ip)2=2∗∑i=1⌊nd⌋i∗i∗φ(i)+[i=1]2−1=∑i=1⌊nd⌋i2∗φ(i)=∑i=1⌊nd⌋∑p|ip2∗φ(p)∗(ip)2
=∑p=1⌊nd⌋p2∗∑t=1⌊ndp⌋t2∗φ(t)=w2∗(w+1)24−∑k=2wk2∗∑i=1⌊wk⌋i2φ(i),w=⌊nd⌋=∑p=1⌊nd⌋p2∗∑t=1⌊ndp⌋t2∗φ(t)=w2∗(w+1)24−∑k=2wk2∗∑i=1⌊wk⌋i2φ(i),w=⌊nd⌋
复杂度
O(n23n23)
代码
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<map>
#define Lint long long int
using namespace std;
const int m2=500000004;
const int m6=166666668;
const int N=10001000;
const int M=1e9+7;
bool vis[N];
Lint phi[N],n;
int pri[N/10],cnt;
int ans;
map<Lint,int> f;
int F(Lint n)
{
n%=M;n=1ll*n*(n+1)%M;
return 1ll*n*m2%M;
}
int G(Lint n)
{
n%=M;int x=1ll*(n+1)*(2*n+1)%M;
return n*x%M*m6%M;
}
int H(Lint n) { return 1ll*phi[n]*(n%M*(n%M)%M)%M; }
void Prepare()
{
Lint L=min( 1ll*N,n+1 );
phi[1]=1;
for(int i=2;i<L;i++)
{
if( !vis[i] ) pri[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt;j++)
{
int x=pri[j]*i;
if( x>=L ) break ;
vis[x]=1;
if( i%pri[j] ) phi[x]=phi[i]*phi[pri[j]];
else
{
phi[x]=phi[i]*pri[j];
break ;
}
}
}
for(int i=1;i<L;i++) phi[i]=(phi[i-1]+H(i))%M;
}
int cal(Lint n)
{
if( n<N ) return phi[n];
if( f.count(n) ) return f[n];
int ret=1ll*F(n)*F(n)%M;
Lint x=2;
while( x<=n )
{
Lint y=n/(n/x);
ret=(ret-1ll*(G(y)-G(x-1)+M)%M*cal(n/x)%M+M)%M;
x=y+1;
}
return f[n]=ret;
}
int main()
{
Lint x=1;
scanf("%lld",&n);
Prepare();
while( x<=n )
{
Lint y=n/(n/x);
ans+=1ll*(y-x+1)%M*(y%M+x%M)%M*m2%M*cal(n/x)%M;
ans%=M,x=y+1;
}
printf("%d\n",ans);
return 0;
}