1 定义 单次训练用的样本数,通常为2^N,如32、64、128 2 提出背景 在batch_size概念没提出之前,神经网络的训练每一个epoch需要将所有的数据一次性加载训练,使得内存负载加大。这样会准确计算梯度方向更准确,但不同梯度值差异过大,无法确定全局的学习率。在这样的条件下,batch_size被提出来了。 3 合适的batch_size训练的优点 使内存利用率增大,加快训练速度使梯度方向计算更准确,收敛快。