2018.11.26学习记录

本文详细介绍了如何在一个数组中实现两个栈的共享,通过控制两个栈顶的相对位置来判断栈是否已满。此外,文章还探讨了数组与链表在效率上的差异,以及在特定场景下选择合适数据结构的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.共享栈

原理:

想要一个数组实现两个栈,那么就必须一个栈的栈顶从数组下标为0处开始,另一个栈从数组额最大下标处开始,两个栈相对而生如下图所示:

如何判断栈满?

当两个栈顶标记重合时,表示共享栈已经满了

代码如下:

头文件ShareStack.h

#pragma once
 
#include<stdio.h>
#include<stdlib.h>
 
typedef char StackType;
 
typedef struct ShareStack{
    StackType* space;
    size_t size_left;
    size_t size_right;
    size_t max_size;
}ShareStack;
 
void ShareStackInit(ShareStack* stack); //共享栈的初始化
 
void ShareStackDestroy(ShareStack* stack); //销毁共享栈
 
 
//对左边栈进行操作
void LeftShareStackPush(ShareStack* stack, StackType value);//入栈
 
void LeftShareStackPop(ShareStack* stack); //出栈
 
int LeftShareStackTop(ShareStack* stack, StackType* value); //取栈顶元素
 
 
//对右边栈进行操作
void RightShareStackPush(ShareStack* stack, StackType value); //入栈
 
void RightShareStackPop(ShareStack* stack); //出栈
 
int RightShareStackTop(ShareStack* stack, StackType* value);//取栈顶元素

头文件的实现ShareStack.c:

#include"ShareStack.h"
 
void ShareStackInit(ShareStack* stack) {
    if(stack == NULL) {
        return;
    }
    stack->max_size = 10;
    stack->size_left = 0;
    stack->size_right = stack->max_size;
    stack->space = malloc(stack->max_size * sizeof(ShareStack));
    return;
}
 
void ShareStackDestroy(ShareStack* stack) {
    if(stack == NULL) {
        return;
    }
    stack->max_size = 0;
    stack->size_left = 0;
    stack->size_right = 0;
    free(stack->space);
    stack->space = NULL;
}
 
void LeftShareStackPush(ShareStack* stack, StackType value) {
    if(stack == NULL) {
        return;
    }
    if(stack->size_left == stack->size_right) {
        return;
    }
    stack->space[stack->size_left] = value;
    stack->size_left++;
    return;
}
 
void LeftShareStackPop(ShareStack* stack) {
    if(stack == NULL) {
        return;
    }
    if(stack->size_left == 0) {
        return;
    }
    stack->size_left--;
    return;
}
 
int LeftShareStackTop(ShareStack* stack, StackType* value) {
    if(stack == NULL || value == NULL) {
        return 0;
    }
    if(stack->size_left == 0) {
        return 0;
    }
    *value = stack->space[stack->size_left - 1];
    return 1;
}
 
 
void RightShareStackPush(ShareStack* stack, StackType value) {
    if(stack == NULL) {
        return;
    }
    if(stack->size_left == stack->size_right) {
        return;
    }
    stack->size_right--;
    stack->space[stack->size_right] = value;
    return;
}
 
void RightShareStackPop(ShareStack* stack) {
    if(stack == NULL) {
        return;
    }
    if(stack->size_left == stack->max_size) {
        return;
    }
    stack->size_right++;
    return;
}
 
int RightShareStackTop(ShareStack* stack, StackType* value) {
    if(stack == NULL || value == NULL) {
        return 0;
    }
    if(stack->size_right == stack->max_size) {
        return 0;
    }
    *value = stack->space[stack->size_right];
    return 1;
}
 
///////////////////////////////////////////////////////////////////
//以下为测试代码
///////////////////////////////////////////////////////////////////
 
void TestShareStack() {
    int ret;
    StackType value;
    ShareStack stack;
    ShareStackInit(&stack);
    printf("LeftStack:\n");
    LeftShareStackPush(&stack, 'a');
    LeftShareStackPush(&stack, 'b');
    LeftShareStackPush(&stack, 'c');
    LeftShareStackPush(&stack, 'd');
    ret = LeftShareStackTop(&stack, &value);
    printf("ret expect 1, actual %d\n", ret);
    printf("value expect d, actual %c\n", value);
    LeftShareStackPop(&stack);
 
    ret = LeftShareStackTop(&stack, &value);
    printf("ret expect 1, actual %d\n", ret);
    printf("value expect c, actual %c\n", value);
    LeftShareStackPop(&stack);
 
    ret = LeftShareStackTop(&stack, &value);
    printf("ret expect 1, actual %d\n", ret);
    printf("value expect b, actual %c\n", value);
    LeftShareStackPop(&stack);
 
    ret = LeftShareStackTop(&stack, &value);
    printf("ret expect 1, actual %d\n", ret);
    printf("value expect a, actual %c\n", value);
    LeftShareStackPop(&stack);
 
   ret = LeftShareStackTop(&stack, &value); //对空栈进行取栈顶元素
    LeftShareStackPop(&stack); //对空栈出栈
    printf("ret expect 0, actual %d\n", ret);
 
 
 
    printf("\nRightStack\n");
    RightShareStackPush(&stack, 'A');
    RightShareStackPush(&stack, 'B');
    RightShareStackPush(&stack, 'C');
    RightShareStackPush(&stack, 'D');
 
    ret = RightShareStackTop(&stack, &value);
    printf("ret expect 1, actual %d\n", ret);
    printf("value expect D, actual %c\n", value);
    RightShareStackPop(&stack);
 
    ret = RightShareStackTop(&stack, &value);
    printf("ret expect 1, actual %d\n", ret);
    printf("value expect C, actual %c\n", value);
    RightShareStackPop(&stack);
 
    ret = RightShareStackTop(&stack, &value);
    printf("ret expect 1, actual %d\n", ret);
    printf("value expect B, actual %c\n", value);
    RightShareStackPop(&stack);
 
    ret = RightShareStackTop(&stack, &value);
    printf("ret expect 1, actual %d\n", ret);
    printf("value expect A, actual %c\n", value);
    RightShareStackPop(&stack);
 
   ret = RightShareStackTop(&stack, &value); //对空栈进行取栈顶元素
    RightShareStackPop(&stack); //对空栈出栈
    printf("ret expect 0, actual %d\n", ret);
 
    ShareStackDestroy(&stack);
}
 
int main()
{
    TestShareStack();
    return 0;
}

二.地址是常量,不能自增所以定义int a[4];a++是非法的;

三.二维数组与二级指针:

几个重要公式:a[i]+j == &a[i][j];*(a+i)+j == &a[i][j];

对于int (*p)[N] = a; /*其中N是二维数组a[M][N]的列数, 是一个数字, 前面说过, 数组长度不能定义成变量*/

有*(p+i) + j == &a[i][j];

理解:int(*p)[N]定义了一个指针p指向int[N];a=a[0]={...(n个int数据)};

四.原地逆序(数组比链表快)

1.数组(前后交换,只需要循环n/2次)

void reverse(char *str)
{
int i;
char *p = str + strlen(str) - 1, a = 'a';//最好有初始化
for (i = 0; i <= strlen(str)/2; i++)//str[i] != '\0'//修改了for循环的条件
{
a = str[i];
str[i] = *p;
*p = a;
p--;
}

2.链表

五.数组和链表的查找(数组为何比链表快?)

1、寻址操作次数链表要多一些。数组只需对 [基地址+元素大小*k] 就能找到第k个元素的地址,对其取地址就能获得该元素。链表要获得第k个元素,首先要在其第k-1个元素寻找到其next指针偏移,再将next指针作为地址获得值,这样就要从第一个元素找起,多了多步寻址操作,当数据量大且其它操作较少时,这就有差距了。

该回答源自:http://tieba.baidu.com/p/5069120437

2、CPU缓存会把一片连续的内存空间读入,因为数组结构是连续的内存地址,所以数组全部或者部分元素被连续存在CPU缓存里面,平均读取每个元素的时间只要3个CPU时钟周期。   而链表的节点是分散在堆空间里面的,这时候CPU缓存帮不上忙,只能是去读取内存,平均读取时间需要100个CPU时钟周期。这样算下来,数组访问的速度比链表快33倍! (这里只是介绍概念,具体的数字因CPU而异)。

因此,程序中尽量使用连续的数据结构,这样可以充分发挥CPU缓存的威力。这种对缓存友好的算法称为 Cache-obliviousalgorithm

该回答源自:https://blog.youkuaiyun.com/islandww/article/details/72511737

六.乱七八糟

1.假如数组中大部分元素已经排好序,现在要对它们排序,插入排序最快。

2.

è¿éåå¾çæè¿°

3.二分查找

//二分查找(折半查找),版本1
int BinarySearch1(int a[], int value, int n)
{
    int low, high, mid;
    low = 0;
    high = n-1;
    while(low<=high)
    {
        mid = (low+high)/2;
        if(a[mid]==value)
            return mid;
        if(a[mid]>value)
            high = mid-1;
        if(a[mid]<value)
            low = mid+1;
    }
    return -1;
}

//二分查找,递归版本
int BinarySearch2(int a[], int value, int low, int high)
{
    int mid = low+(high-low)/2;
    if(a[mid]==value)
        return mid;
    if(a[mid]>value)
        return BinarySearch2(a, value, low, mid-1);
    if(a[mid]<value)
        return BinarySearch2(a, value, mid+1, high);
}

 

基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值