判断某一点是否在三角形内

判断点在三角形内的方法

1.同向法

假设点P位于三角形内,会有这样一个规律,当我们沿着ABCA的方向在三条边上行走时,你会发现点P始终位于边AB,BC和CA的右侧。我们就利用这一点,但是如何判断一个点在线段的左侧还是右侧呢?我们可以从另一个角度来思考,当选定线段AB时,点C位于AB的右侧,同理选定BC时,点A位于BC的右侧,最后选定CA时,点B位于CA的右侧,所以当选择某一条边时,我们只需验证点P与该边所对的点在同一侧即可。问题又来了,如何判断两个点在某条线段的同一侧呢?

 

首先看一下这个问题,如何判断某两个点在某条直线的同一侧(代码中函数:IsPointAtSameSideOfLine)?

image

根据向量的叉乘以及右手螺旋定则,AB^AM (^表示叉乘,这里向量省略了字母上面的箭头符号)的方向为向外指出屏幕,AB^AN也是向外指出屏幕,但AB^AO的方向是向内指向屏幕,因此M,N在直线AB的同侧,M ,O在直线AB的两侧。实际计算时,只需要考虑叉积的数值正负

假设以上各点坐标为A(0,0), B(4,0), M(1,2), N(3,4), O(3,-4), 则:

AB^AM = (4,0)^(1,2) = 4*2 - 0*1 = 8

AB^AN = (4,0)^(3,4) = 4*4 – 0*3 = 16

AB^AO = (4,0)^(3,-4) = 4*-4 – 0*3 = –16

由上面的数值可知,可以根据数值的正负判断叉乘后向量的方向。即,如果叉积AB^AM 和 AB^AN的结果同号,那么M,N两点就在直线的同侧,否则不在同一侧。特殊地,如果点M在直线AB上,则AB^AM的值为0。(如果是在三维坐标系中,求出的叉积是一个向量,可以根据两个向量的点积结果正负来判断两个向量的是否指向同一侧) 

以上的问题解决了,就很容易的用来判断某个点是否在三角形内,如果P在三角形ABC内部,则满足以下三个条件:P,A在BC的同侧、P,B在AC的同侧、PC在AB的同侧。某一个不满足则表示P不在三角形内部。

2.面积法

如果点P在三角形ABC的内部,则三个小三角形PAB, PBC, PAC的面积之和 = ABC的面积,反之则不相等。

已知三角形的三个顶点坐标求其面积,可以根据向量的叉乘


### MATLAB 中判断是否位于三角形内部的方法 在MATLAB中,可以通过多种方法来判断一个是否位于由给定顶定义的空间三角形内。一种常用且高效的方式是基于向量叉积的判定方法[^1]。 #### 向量法原理 该方法利用了三维空间中的向量关系来进行判断。对于不在同一平面内的四 \(P\) \(\triangle ABC\) 的三个顶: - 计算从三角形的一个顶到其他两个顶以及待测形成的三条边对应的向量; - 使用这些向量之间的叉乘结果来决定方向性相对位置; - 如果这三个叉乘的结果都指向相同的一侧,则说明测试处于三角形之内;反之则在外。 具体来说,设有\( P(x_p,y_p,z_p)\),要检测其相对于\(\triangle ABC\)的位置,可以按照如下方式操作: ```matlab function inside = isPointInTriangle(P,A,B,C) % 定义各条边上单位向量 AB = B - A; AC = C - A; AP = P - A; BC = C - B; BP = P - B; CA = A - C; CP = P - C; % 叉乘得到法线方向 n1 = cross(AB,AC); n2 = cross(AP,AB); n3 = cross(BP,BC); n4 = cross(CP,CA); % 判断符号一致性 d1 = dot(n2,n1)>0; d2 = dot(n3,n1)>0; d4 = dot(n4,n1)>0; inside = all([d1,d2,d4]); end ``` 此函数接收四个参数——分别是表示目标构成三角形三顶坐标的列向量,并返回逻辑值指示输入是否落在指定区域内。 另外还有一种更简洁的办法就是采用面积比较的方式来解决问题,即当某一点使得原三角形被分割成的小三角形总面积等于原始大三角形时,那么这个就在原来的那个三角形里面[^2]。 然而上述两种方案均适用于二维平面上的情形,在处理实际工程应用里的立体几何对象之前还需要额外考虑一些因素以确保准确性[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值