The following is from Max Howell @twitter:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can't invert a binary tree on a whiteboard so fuck off.
Now it's your turn to prove that YOU CAN invert a binary tree!
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤10) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N−1. Then N lines follow, each corresponds to a node from 0 to N−1, and gives the indices of the left and right children of the node. If the child does not exist, a -
will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each test case, print in the first line the level-order, and then in the second line the in-order traversal sequences of the inverted tree. There must be exactly one space between any adjacent numbers, and no extra space at the end of the line.
Sample Input:
8
1 -
- -
0 -
2 7
- -
- -
5 -
4 6
Sample Output:
3 7 2 6 4 0 5 1
6 5 7 4 3 2 0 1
#include <iostream>
#include <queue>
using namespace std;
struct Node {
int lchild;
int rchild;
}node[110];
bool notRoot[110] = {false};
int n, num;
void print(int id) {
printf("%d", id);
num++;
if (num < n) printf(" ");
else printf("\n");
}
void postOrder(int root) {
if (root == -1) {
return ;
}
postOrder(node[root].lchild);
postOrder(node[root].rchild);
swap(node[root].rchild, node[root].lchild);
}
void BFS(int root) {
queue<int> q;
q.push(root);
while (!q.empty()) {
root = q.front();
q.pop();
print(root);
if (node[root].lchild != -1) q.push(node[root].lchild);
if (node[root].rchild != -1) q.push(node[root].rchild);
}
}
void inOrder(int root) {
if (root == -1) return ;
inOrder(node[root].lchild);
print(root);
inOrder(node[root].rchild);
}
int strToNum(char ch) {
if (ch >= '0' && ch <= '9') {
notRoot[ch - '0'] = true;
return ch - '0';
}
return -1;
}
int findRoot() {
int i;
for (i = 0; i < n; i++) {
if (notRoot[i] == false) return i;
}
}
int main() {
char l, r;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%*c%c %c", &l, &r);
node[i].lchild = strToNum(l);
node[i].rchild = strToNum(r);
}
int root = findRoot();
postOrder(root);
BFS(root);
num = 0;
inOrder(root);
return 0;
}