| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 62002 | Accepted: 28961 | |
| Case Time Limit: 2000MS | ||
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2
Sample Output
6 3 0
AC代码:
//#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXSIZE=50000+10;
const int inf=0x3f3f3f3f;
struct node{
int value,value1;
int rchild,lchild;
}tree[MAXSIZE*4];
int father[MAXSIZE];
int n,q;
void BuiltTree(int i,int l,int r){
tree[i].lchild=l;
tree[i].rchild=r;
tree[i].value=-inf;
tree[i].value1=inf;
if(l==r){
father[l]=i;
return;
}
BuiltTree(i<<1,l,(l+r)/2);
BuiltTree((i<<1)+1,(l+r)/2+1,r);
}
void Update(int i){
if(i<=1) return;
int fi=i>>1;
int a=tree[fi<<1].value;
int b=tree[(fi<<1)+1].value;
int a1=tree[fi<<1].value1;
int b1=tree[(fi<<1)+1].value1;
tree[fi].value=max(a,b);
tree[fi].value1=min(a1,b1);
Update(i>>1);
}
int MAX,MIN;
void Query(int i,int l,int r){
if(tree[i].lchild==l&&tree[i].rchild==r){
MAX=max(MAX,tree[i].value);
MIN=min(MIN,tree[i].value1);
return;
}
i=i<<1;
if(l<=tree[i].rchild){
if(r<=tree[i].rchild) Query(i,l,r);
else Query(i,l,tree[i].rchild);
}
i++;
if(r>=tree[i].lchild){
if(l>=tree[i].lchild) Query(i,l,r);
else Query(i,tree[i].lchild,r);
}
}
int main(){
std::ios::sync_with_stdio(false);
cin>>n>>q;
BuiltTree(1,1,n);
for(int i=1;i<=n;i++){
cin>>tree[father[i]].value;
tree[father[i]].value1=tree[father[i]].value;
Update(father[i]);
}
int a,b;
while(q--){
cin>>a>>b;
MAX=-inf;
MIN=inf;
Query(1,a,b);
cout<<MAX-MIN<<endl;
}
return 0;
}
本文介绍了一种使用线段树的数据结构来优化查询特定范围内最大值和最小值的问题,该方法适用于处理大规模数据集中的区间查询任务,特别是对于高度等有上下限约束的游戏场景。
1万+

被折叠的 条评论
为什么被折叠?



