POJ3264Balanced Lineup 线段树

本文介绍了一种使用线段树的数据结构来优化查询特定范围内最大值和最小值的问题,该方法适用于处理大规模数据集中的区间查询任务,特别是对于高度等有上下限约束的游戏场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Balanced Lineup
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 62002 Accepted: 28961
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

AC代码:

//#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXSIZE=50000+10;
const int inf=0x3f3f3f3f;
struct node{
    int value,value1;
    int rchild,lchild;
}tree[MAXSIZE*4];
int father[MAXSIZE];
int n,q;
void BuiltTree(int i,int l,int r){
    tree[i].lchild=l;
    tree[i].rchild=r;
    tree[i].value=-inf;
    tree[i].value1=inf;
    if(l==r){
        father[l]=i;
        return;
    }
    BuiltTree(i<<1,l,(l+r)/2);
    BuiltTree((i<<1)+1,(l+r)/2+1,r);
}
void Update(int i){
    if(i<=1) return;
    int fi=i>>1;
    int a=tree[fi<<1].value;
    int b=tree[(fi<<1)+1].value;
    int a1=tree[fi<<1].value1;
    int b1=tree[(fi<<1)+1].value1;
    tree[fi].value=max(a,b);
    tree[fi].value1=min(a1,b1);
    Update(i>>1);
}
int MAX,MIN;
void Query(int i,int l,int r){
    if(tree[i].lchild==l&&tree[i].rchild==r){
        MAX=max(MAX,tree[i].value);
        MIN=min(MIN,tree[i].value1);
        return;
    }
    i=i<<1;
    if(l<=tree[i].rchild){
        if(r<=tree[i].rchild) Query(i,l,r);
        else Query(i,l,tree[i].rchild);
    }
    i++;
    if(r>=tree[i].lchild){
        if(l>=tree[i].lchild) Query(i,l,r);
        else Query(i,tree[i].lchild,r);
    }
}
int main(){
    std::ios::sync_with_stdio(false);
    cin>>n>>q;
    BuiltTree(1,1,n);
    for(int i=1;i<=n;i++){
        cin>>tree[father[i]].value;
        tree[father[i]].value1=tree[father[i]].value;
        Update(father[i]);
    }
    int a,b;
    while(q--){
        cin>>a>>b;
        MAX=-inf;
        MIN=inf;
        Query(1,a,b);
        cout<<MAX-MIN<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kunsir_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值