leetcode 300.最长上升子序列 笔记

探讨如何通过贪心算法结合二分查找,将最长上升子序列问题的时间复杂度从O(n^2)优化至O(nlogn),并附带代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接
给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4 
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4

说明:
可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

初始想法:

偏向动态规划的思路,从头或者从尾开始,记录每个数对应位置的最长上升子序列。
例如10处上升子序列是1,9处是1,2处是1,5处是2,3处是2。。。
一开始觉得这个算法是O(nlogn),后来一想,nums向量里每个新遍历的元素好像必须和前面所有序列比,这不O(n2)吗。。。这破题还不让我到O(n2)

官方:贪心 +二分法:

所谓贪心,即我们需要让序列上升得尽可能慢,因此我们希望每次在上升子序列最后加上的那个数尽可能的小。

感觉这里的贪心形容的不是很准确 ,后来明白了其大概意思——
官方举例中[0,8,4,12,2] 的第五步插入,由[0,4,12]变为[0,2,12]是因为2处于0与4之间,此时2换掉4。考虑后续如果还有数,假设是6,此时6既大于4,也大于2,那么最大子序列依旧是3,倘若是3呢?3是小于4的,这时[0,4,12]就没有办法很好满足我们的需求了。因此将4替换维更小的2是必要的。
当一个数处于序列里两数之间时,用它替换掉较大的那个数,既部改变当前序列大小,又保证后续添数一定是最完美的方案!

接着就是二分法,没啥说头,这里就是O(n2)变O(nlogn)的原因了。

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int len = 1, n = (int)nums.size();
        if (n == 0) return 0;
        vector<int> d(n + 1, 0);
        d[len] = nums[0];
        for (int i = 1; i < n; ++i) {
            if (nums[i] > d[len]) d[++len] = nums[i];
            else{
                int l = 1, r = len, pos = 0;
                while (l <= r) {
                    int mid = (l + r) >> 1;
                    if (d[mid] < nums[i]) {
                        pos = mid;
                        l = mid + 1;
                    }
                    else r = mid - 1;
                }
                d[pos + 1] = nums[i];
            }
        }
        return len;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值