分支限界之装载问题6.11

本文介绍了一个使用队列和迭代算法来计算一组集装箱在不超过船舶最大载重限制下所能达到的最大载重量的方法。通过读取输入文件中的集装箱重量和船舶最大载重,程序实现了对最优装载方案的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

去吃饭了,就不写注释了。。。

package com.company;

import com.zw.IO.FileOPeration;

import java.io.File;
import java.io.IOException;
import java.util.Collection;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.io.PrintWriter;

public class Problem_11 {
    static File inputfile;
    static File outputfile;
    static int[] inputarray;
    static int n;
    static int Capacity;
    public static void main(String [] args)throws IOException{
        //int [] cc = {7,2,6,5,4};
        //int max = findMaxLoadCapacity(cc,10);
       // System.out.print(max);
        fileOperation();
        for(int i=0;i<n;i++){
            System.out.print(inputarray[i]+" ");
        }
        int max = findMaxLoadCapacity(inputarray,Capacity);
        System.out.println();
        System.out.print("最大载重量为 "+max);

    }
    private static void fileOperation()throws IOException {
        inputfile = new File("input.txt");
        outputfile = new File("output.txt");
        Scanner input = new Scanner(inputfile);
        PrintWriter output = new PrintWriter(outputfile);
        n = input.nextInt();
        inputarray = new int[n];
        Capacity = input.nextInt();
        for(int i=0;i<n;i++){
            inputarray[i] = input.nextInt();
        }
    }

    /**
     * @param c 集装箱重量数组
     *
     *
     * @param Capacity 船的最大载重
     * @return
     */
    static int findMaxLoadCapacity(int [] c,int Capacity){
        int maxLoadCapacity=0,currentLoadCapacity=0;
        int i = 0;
        int n = c.length;
        Queue<Integer> queue = new LinkedList<>();
        queue.offer(-1);
        while (!queue.isEmpty()){
            if(i<n&&currentLoadCapacity + c[i] <= Capacity){
                maxLoadCapacity = enQueue(queue,n,i,maxLoadCapacity,currentLoadCapacity+c[i]);//x[i]=1
                maxLoadCapacity = enQueue(queue,n,i,maxLoadCapacity,currentLoadCapacity); //x[i]=0
                currentLoadCapacity = queue.poll();
                if(currentLoadCapacity==-1){
                    if(queue.isEmpty()) return maxLoadCapacity;
                    else{
                        queue.offer(-1);
                        currentLoadCapacity = queue.poll();
                        i++;
                    }
                }
            }
            else if(i<n&& currentLoadCapacity + c[i] > Capacity){
                maxLoadCapacity = enQueue(queue,n,i,maxLoadCapacity,currentLoadCapacity); //x[i]=0
                currentLoadCapacity = queue.poll();
                if(currentLoadCapacity==-1){
                    if(queue.isEmpty()) return maxLoadCapacity;
                    else{
                        queue.offer(-1);
                        currentLoadCapacity = queue.poll();
                        i++;
                    }
                }
            }
            else{
                break;
            }

        }
        return maxLoadCapacity;
    }
    static int enQueue(Queue<Integer> queue,int n,int i,int maxLoad,int load){
        if(i<n){
            if(load>maxLoad) maxLoad=load;
            queue.offer(load);
        }
        return maxLoad;
    }

}

 

#include #include #include #include using namespace std; ifstream infile; ofstream outfile; class Node { friend int func(int*, int, int, int*); public: int ID; double weight;//物品的重量 }; bool comp1(Node a, Node b) //定义比较规则 { return a.weight > b.weight; } class Load; class bbnode; class Current { friend Load; friend struct Comp2; private: int upweight;//重量上界 int weight;//结点相应的重量 int level;//活结点在子集树中所处的层次 bbnode* ptr;//指向活结点在子集树中相应结点的指针 }; struct Comp2 { bool operator () (Current *x, Current *y) { return x->upweightupweight; } }; class Load { friend int func(int*, int, int, int*); public: int Max0(); private: priority_queue<Current*, vector, Comp2>H;//利用优先队列(最大堆)储存 int limit(int i); void AddLiveNode(int up, int cw, bool ch, int level); bbnode *P;//指向扩展结点的指针 int c;//背包的容量 int n;//物品的数目 int *w;//重量数组 int cw;//当前装载量 int *bestx;//最优解方案数组 }; class bbnode { friend Load; friend int func( int*, int, int, int*); bbnode* parent; bool lchild; }; //结点中有双亲指针以及左儿子标志 int Load::limit(int i) //计算结点所相应重量的上界 { int left,a; left= c - cw;//剩余容量 a = cw; //b是重量上界,初始值为已经得到的重量 while (i <= n && w[i] parent = P; b->lchild = ch; Current* N = new Current; N->upweight = up; N->weight = cw; N->level = level; N->ptr = b; H.push(N); } int Load::Max0() { int i = 1; P = 0; cw = 0; int bestw = 0; int up = limit(1); while (i != n + 1) { int wt = cw + w[i]; //检查当前扩展结点的左儿子结点 if (wt bestw) bestw =wt; AddLiveNode(up,wt, true, i + 1); } up = limit(i + 1); //检查当前扩展结点的右儿子结点 if (up >= bestw)//如果右儿子可行 { AddLiveNode(up,cw, false, i + 1); } Current* N = H.top(); //取队头元素 H.pop(); P = N->ptr; cw = N->weight; up = N->upweight; i = N->level; } bestx = new int[n + 1]; for (int j = n; j > 0; --j) { bestx[j] = P->lchild; P = P->parent; } return cw; } int func(int *w, int c, int n, int *bestx) //调用Max0函数对子集树的优先队列式进行分支限界搜索 { int W = 0; //初始化装载的总质量为0 Node* Q = new Node[n]; for (int i = 0; i < n; ++i) { Q[i].ID = i + 1; Q[i].weight = w[i+1]; W += w[i+1]; } if (W <= c)//如果足够装,全部装入 return W; sort(Q, Q + n, comp1); //首先,将各物品按照重量从大到小进行排序; Load K; K.w = new int[n + 1]; for (int j = 0; j < n; j++) K.w[j + 1] = w[Q[j].ID]; K.cw = 0; K.c = c; K.n = n; int bestp = K.Max0(); for (int k = 0; k < n; k++) { bestx[Q[k].ID] = K.bestx[k + 1]; } delete []Q; delete []K.w; delete []K.bestx; return bestp; } int main() { int*w,*Final; int c,n,i,best; infile.open("input.txt",ios::in); if(!infile) { cerr<<"open error"<>c; infile>>n; w=new int[n+1]; for(i=1;i>w[i]; infile.close(); Final = new int[n+1]; best = func( w, c, n, Final); outfile.open("output.txt",ios::out); if(!outfile) { cerr<<"open error"<<endl; exit(1); } outfile << best << endl; for (int i = 1; i <= n; ++i) { outfile<<Final[i]<<" "; } outfile.close(); return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值