LeetCode-169-Majority Element-E

本文介绍了一种名为Moore投票算法的方法,用于在一个大小为n的数组中查找出现次数超过n/2的多数元素。该算法利用了每次从数组中删除一对不同元素的思想,最终留下多数元素。此算法的时间复杂度为O(n),空间复杂度为O(1)。

Given an array of size n, find the majority element. The majority element is the element that appears more than⌊n/2⌋times.
You may assume that the array is non-empty and the majority element always exist in the array.

解决方法:Moore’s voting algorithm
算法的基本思想:每次都找出一对不同的元素,从数组中删掉,直到数组为空或只有一种元素。不难证明,如果存在元素e出现频率超过半数,那么数组中最后剩下的就只有e。
在算法执行过程中,我们使用常量空间实时记录一个候选元素c以及其出现次数f(c),c即为当前阶段出现次数超过半数的元素。
在遍历开始之前,该元素c为空,f(c)=0。
然后在遍历数组A时,如果f(c)为0,表示当前并没有候选元素,也就是说之前的遍历过程中并没有找到超过半数的元素。那么,如果超过半数的元素c存在,那么c在剩下的子数组中,出现次数也一定超过半数。因此我们可以将原始问题转化为它的子问题。此时c赋值为当前元素, 同时f(c)=1。
如果当前元素A[i] == c, 那么f(c) += 1。(没有找到不同元素,只需要把相同元素累计起来)
如果当前元素A[i] != c,那么f(c) -= 1。 (相当于删除1个c),不对A[i]做任何处理(相当于删除A[i])
如果遍历结束之后,f(c)不为0,那么元素c即为寻找的元素。上述算法的时间复杂度为O(n),而由于并不需要真的删除数组元素,我们也并不需要额外的空间来保存原始数组,空间复杂度为O(1)。

int majorityElement(vector<int>& nums) {
        int maj=0,count=1;
        for(int i=1;i<nums.size();i++){
            nums[i]==nums[maj]?count++:count--;
            if(count==0){
                maj=i;
                count=1;
            }            
        }
        return nums[maj];
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值