1066 Root of AVL Tree (25 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
题意:给出N个正整数,将它们依次插入初始状态为空的AVL树上,求插入后根结点的值
左旋
void L(node* &root)
{
node* temp=root->rchild;
root->rchild=temp->lchild;
temp->lchild=root;
updateHeight(root);
updateHeight(temp);
root=temp;
}
右旋
void R(node* &root)
{
node* temp=root->lchild;
root->lchild=temp->rchild;
temp->rchild=root;
updateHeight(root);
updateHeight(temp);
root=temp;
}
总结
void insert(node* &root,int v)
{
if(root==NULL)
{
root=newNode(v);
return;
}
if(v<root->v)
{
insert(root->lchild,v);
updateHeight(root);
if(getBalanceFactor(root)==2)
{
if(getBalanceFactor(root->lchild)==1)
{
//LL型
R(root);
}
else if(getBalanceFactor(root->lchild)==-1)
{
//LR型
L(root->lchild);
R(root);
}
}
}
else{
insert(root->rchild,v);
updateHeight(root);
if(getBalanceFactor(root)==-2)
{
if(getBalanceFactor(root->rchild)==-1)
{
//RR型
L(root);
}
else if(getBalanceFactor(root->rchild)==1)
{
//RL型
R(root->rchild);
L(root);
}
}
}
}
整道题代码
#include<cstdio>
#include<algorithm>
using namespace std;
struct node
{
int v,height;//v为结点权值,height为当前子树高度
node *lchild,*rchild;
}*root;
//生成一个新结点,v为结点权值
node* newNode(int v)
{
node* Node=new node;
Node->v=v;
Node->height=1;
Node->lchild=Node->rchild=NULL;
return Node;
}
//获取以root为根结点的子树的当前height
int getHeight(node* root)
{
if(root==NULL)return 0;
return root->height;
}
//更新结点root的height
void updateHeight(node* root)
{
root->height=max(getHeight(root->lchild),getHeight(root->rchild))+1;
}
//计算结点root的平衡因子
int getBalanceFactor(node* root)
{
return getHeight(root->lchild)-getHeight(root->rchild);
}
//左旋
void L(node* &root)
{
node* temp=root->rchild;
root->rchild=temp->lchild;
temp->lchild=root;
updateHeight(root);
updateHeight(temp);
root=temp;
}
//右旋
void R(node* &root)
{
node* temp=root->lchild;
root->lchild=temp->rchild;
temp->rchild=root;
updateHeight(root);
updateHeight(temp);
root=temp;
}
//插入权值为v的结点
void insert(node* &root,int v)
{
if(root==NULL)
{
root=newNode(v);
return;
}
if(v<root->v)
{
insert(root->lchild,v);
updateHeight(root);
if(getBalanceFactor(root)==2)
{
if(getBalanceFactor(root->lchild)==1)
{
//LL型
R(root);
}
else if(getBalanceFactor(root->lchild)==-1)
{
//LR型
L(root->lchild);
R(root);
}
}
}
else{
insert(root->rchild,v);
updateHeight(root);
if(getBalanceFactor(root)==-2)
{
if(getBalanceFactor(root->rchild)==-1)
{
//RR型
L(root);
}
else if(getBalanceFactor(root->rchild)==1)
{
//RL型
R(root->rchild);
L(root);
}
}
}
}
//AVL树的建立
node* Create(int data[],int n)
{
node* root=NULL;
for(int i=0;i<n;i++)
{
insert(root,data[i]);
}
return root;
}
int main()
{
int n,v;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&v);
insert(root,v);
}
printf("%d\n",root->v);
return 0;
}