codeforces 1038D Slime

本文解析了CodeForces上的一道题目,该题要求计算一排粘液通过相互吞并能达到的最大值。文章总结了关键结论,并给出了贪心算法与递归结合的解决方案。

题目链接:http://codeforces.com/problemset/problem/1038/D
题目大意:有一排粘液,每个粘液有他自己的值。粘液(值为X)可以吞并相邻的粘液(值为Y),得到的新的粘液的值是(X-Y)。求最后剩余的粘液的最大可能值。
大致题解:
首先需要读者清楚一下几个结论:
1)最大值和最小值互为相反数(针对n大于1的情况)(因为吃与被吃是相对立的,既然吃能够得到最大,那么被吃也就可以得到最小)
2)除了n=1的情况,其余的情况答案都是一个正数( 联系 1))
3)有且仅有一个位置不被任何粘液“吃”。可以有多个位置没有“吃”任何粘液
4)既然吃与被吃是相对的,那么对于每个粘液,他能被吃也能吃其它粘液,即对于任何粘液,可以加它的值,也可以减它的值

弄清楚以上几个结论之后,我们很容易想到贪婪和递归。
我们每次取当前最大值的粘液作为唯一一个没有被吃的粘液,然后剩下的粘液求最小值,因为最大值和最小值互为相反数,所以最小数是最大值的相反数。
所以所求的最大值=当前最大值-(剩下粘液的最小值)=当前最大值+(剩下粘液的最大值)因为只有一个不能被吃,所以所有粘液的最大值用真值,在递归的时候,所有粘液都能吃与被吃,所以用其绝对值。
所以去除最大值和最小值,其余的进行递归。
n=1的时候单独考虑

#include <bits/stdc++.h>
using namespace std;

#define MAXN 500005
#define LL long long

int n,a[MAXN];
LL ans;

LL dp(int k){
    if(k<2)return 0;
    if(k==2)return abs(a[1]);
    return dp(k-1)+abs(a[k-1]);
}
int main()
{
    scanf("%d",&n);
    for(int i=0;i<n;i++)scanf("%d",&a[i]);
    if(n==1){cout<<a[0];exit(0);}
    sort(a,a+n);
    ans=dp(n-1);
    cout<<ans+a[n-1]-a[0];
    return 0;
}

写在后面:这道题当时没有写出来,一直以为结果与粘液的位置有关,所以并未想到排序。是自己的考虑不周。

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值