机器学习之主成分分析PCA(Python实现)

理解PCA:what? why? how?

当我们拿到一个数据集的时候,往往数据集中每一个样本的描述是多维的,多维的特征空间不便于我们或者计算机对其进行分析和处理,所以我们希望用低维度的特征向量来表述样本的特征,此时我们需要对其进行降维

假设矩阵 X 在多维空间中有 n 个样本点:
样本投影

我们希望它们投影到一个方向 u 上,使得投影范围最大,这个方向称为主方向(主成分PCA),可以用方差度量一个随机变量离散程度,即可用方差度量样本点在一个方向上投影之后得离散程度

样本 X(150x4) 投影到 u(4x1) 方向上,即 Xu,得到一个一维的向量 Z(150x1)
Z向量
Z 求方差,而使得方差最大的那个 u 就是主方向,所以我们需要对z = Xu求方差,并且求方差的极值

一、求方差:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值